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Abstract
The carbon trading market is an effective tool to combat greenhouse gas emissions, and as
the core issue of carbonmarket, carbon price can stimulate the market for technological inno-
vation and industrial transformation. However, the complex characteristics of carbon price
such as nonlinearity and nonstationarity bring great challenges to carbon price prediction
research. In this study, potential influencing factors of carbon price are introduced into car-
bon price forecasting, and a novel hybrid carbon price forecasting framework is developed,
which contains data decomposition and reconstruction techniques, two-stage feature dimen-
sion reduction methods, intelligent and optimized deep learning forecasting with nonlinear
integrated models and interval forecasting. Firstly, the carbon price series is decomposed into
several simple and smooth subsequences using variationalmodal decomposition. The stacked
autoencoder is then used to extract its effective features and reconstruct them into several
new subsequences. A two-stage feature dimension reduction method is utilized for feature
selection and extraction of exogenous variables. A bidirectional long and short-termmemory
model optimized based on the cuckoo search algorithmwas used for prediction and nonlinear
integration. Finally, Gaussian process regression based on a hybrid kernel function is applied
to carbon price interval forecasting. The validity of the model was verified on seven real
carbon trading pilot datasets in China. The methodology outperforms all benchmark models
in the final simulation results, providing a novel and efficient forecasting method for the
carbon trading industry.
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Abbreviations

ADF Augmented Dickey-Fuller
AE Auto encoder
AI Artificial intelligence
ANN Artificial neural network
ARIMA Autoregressive integrated moving average
BDS Brock-Decher-Scheikman
BPNN Back propagation neural network
BiLSTM Bi-directional long and short-term memory
BP Back propagation
CS Cuckoo search
EMD Empirical modal decomposition
GARCH Generalized autoregressive conditional heteroskedasticity
GPR Gaussian process regression
LSSVR Least squares support vector regression
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MLP Muti-layer perceptron
RBFNN Radial basis function neural networks
RNN Recurrent neural networks
RF Random forest
RMSE Root mean square error
SAE Stacked autoencoder
SSA Singular spectrum analysis
VMD Variational mode decomposition

1 Introduction

Global climate change has created enormous challenges to socioeconomic and environmental
systems in recent years. Excessive emissions of greenhouse gases, especially carbon dioxide,
are one of the significant contributors to climate change. The European Union Emissions
Trading System (EU ETS) has proven to be an effective system for combating greenhouse
gas emissions (Wei et al., 2018). Meanwhile, carbon dioxide has developed into a tradable
commodity under the trading system of the EU ETS. Researchers believe that carbon pricing
is one of the most effective strategies to reduce global greenhouse gas emissions (Farouq
et al., 2021). As the largest emitter of carbon dioxide, China established eight pilot carbon
emissions trading markets in 2011, including Beijing, Chongqing, Guangdong, Shanghai,
Tianjin, Hubei, Shenzhen, and Fujian. Driven by the domestic and international emission
reduction situation, China is capable of achieving its emission reduction commitments in the
coming decades (Meng et al., 2019).

As an emerging financial industry, the carbon trading market is influenced by a variety of
factors, including the trading environment, regional development, and related policies. Due
to the uncertainty of internal mechanism and the external environment, carbon price shows
complex characteristics such as nonlinear and nonstationary (Zhu et al., 2019a, 2019b). As a
result, carbon trading carries more unknown risks than conventional financial products. The
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carbon trading market in China is still in the stage of exploration and improvement. Accurate
carbon price forecasts not only help policy makers gain insight into the volatility features
of the carbon trading market and improve the policies and regulations of the carbon trading
market, but also promote the reduction of carbon emissions (Yang et al., 2020). Therefore,
establishing an effective and stable carbon price forecasting framework for the carbon trading
market is a significant research problem that needs to be solved urgently.

To achievemore accurate and effective carbonprice forecasting, researchers have proposed
many forecasting models in recent years. The existing forecasting models can be classified
into three types: statistical models, artificial intelligence (AI) models, and hybrid models.
Statistical models can achieve short-term forecasts of carbon prices. However, the statistical
model is based on rigorous statistical assumptions, such as linearity and smoothness. It is
difficult for statistical models to obtain ideal prediction accuracy when forecasting nonlinear
and nonstationary carbon price time series. In contrast, AI models represented by artificial
neural networks (ANN) do not need to satisfy statistical assumptions and can effectively
learn the nonlinear relationships in data (Abedin et al., 2021). Nowadays, AI models are
widely used in the field of time series forecasting, such as credit risk prediction forecasting
(Abedin et al., 2018; Chi et al., 2019), energy supply forecasting (Sun et al., 2022), and
wind speed forecasting (Li et al., 2022a, 2022b). Due to carbon prices’ nonlinear and nonsta-
tionary characteristics, AI models have better prediction performance and adaptability than
statistical methods. However, carbon prices in different carbon tradingmarkets have different
characteristics, making it impossible for a single AI model to suit the needs of all carbon
markets. Therefore, the researchers proposed hybrid models to further improve the accuracy
and stability of carbon price prediction. Among numerous hybrid models, the decomposition
integration strategy shows excellent prediction performance in nonlinear time series forecast-
ing. The decomposition integration model decomposes the original time series into several
components by a signal decomposition algorithm, and then predicts them separately. The
prediction results are then integrated to get the ultimate prediction results. The decomposi-
tion integration model has proven its effectiveness in various fields, such as financial indices
(Li et al., 2021a), electricity prices (Zhang et al., 2022), and wind power generation (Liu
et al., 2022).

Although the existing carbon price forecastingmodels have achieved good forecasting per-
formance, there are still some areas for improvement. First, some of the previous studies have
modeled and predicted all the components obtained from the decomposition, which increases
the computational complexity and reduces the modeling efficiency. Similarities and invalid
information exist in the different components obtained by decomposition, but this is often
overlooked. Second, the predictionmodels for each subsequence are often the same.Different
subseries have their own unique characteristics, for which separate prediction models with
more appropriate hyperparameters should be built. Third, there is some unreasonableness in
the way of linear integration of each subseries prediction result. The nonlinear relationship
between the subseries prediction results is ignored, which will degrade the prediction perfor-
mance to some extent. Fourth, most current studies mainly use historical carbon price data
for forecasting, while ignoring economic factors, climate factors and other potential factors
that affect carbon price fluctuations. Meanwhile, if all factors are used for forecasting stud-
ies, the redundancy and correlation among the influencing factors may lead to the problem
of error accumulation in the forecasting model. Fifth, existing studies often give only point
prediction results of carbon prices. However, carbon assets in the carbon market always give
information on the fluctuation of carbon prices with the data of such intervals as [minimum,
maximum]. With merely point predictions of carbon prices, it is difficult to capture the range
of carbon price fluctuations in the real carbon market. In contrast, interval forecasting can
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provide a new way for carbon price forecasting research, stepping out of the traditional mode
of studying uncertainty problems with precise observations. In summary, achieving accurate
and stable carbon price forecasts remains a great challenge.

To further address the challenges in carbon price forecasting research, this paper develops
a novel hybrid forecasting framework. The framework considers the impact of different fac-
tors on carbon price prediction and contains a novel VMD algorithm, stacked autoencoder
(SAE), random forest (RF), bidirectional long and short-term memory neural network (BiL-
STM), cuckoo optimization algorithm (CS), and gaussian process regression (GPR). First,
the original carbon price series is decomposed using the VMD algorithm to obtain several
simpler and smoother components. The SAE is then used to extract the effective features from
the different decomposition components, remove the noise and reconstruct them into several
new components to reduce the complexity of the prediction. Second, a two-stage feature
dimension reduction method based on RF and SAE is constructed in this paper to deal with
the influencing factors. The factors with a strong influence on carbon price are selected using
RF, and the factors with low influence are removed. SAE is then used to extract features from
the factors after feature selection. SAE can remove redundant information from the factors
and effectively extract the intrinsic features to solve the problems such as error accumulation
that may result from the introduction of exogenous variables. Third, a prediction model is
constructed for each reconstructed component using BiLSTM. And the CS is used to find
the optimal hyperparameters of different BiLSTM to obtain the best prediction results. After
getting the prediction results of all reconstruction components, the CS-optimized BiLSTM
is used as a nonlinear integrated model to improve the prediction accuracy further and get the
point prediction results of the carbon price. Finally, the interval prediction results of carbon
prices are obtained using a GPR model based on a hybrid kernel function.

In summary, the main innovations and contributions of this paper are summarized in the
following four points:

(1) Considering the similarity and invalid information existing in different decomposition
components, this paper combines VMD and SAE to extract the effective features of
the original carbon price series. Meanwhile, this paper considers the impact of dif-
ferent influencing factors on carbon price prediction and proposes a two-stage feature
dimension reduction method to process the influencing factor data effectively. It fur-
ther reduces the computational complexity of the prediction model and improves the
prediction accuracy.

(2) To improve the accuracy of prediction, this paper proposes a two-stage prediction of
carbon price based on BiLSTM with CS optimization. The CS-BiLSTM is used to
model different components separately for prediction, enabling the prediction model
to have higher prediction accuracy and stability. In addition, unlike the previous linear
integration, this paper also usesCS-BiLSTMas a nonlinear integrationmodel to improve
the predictive performance and robustness of carbon price forecasting.

(3) Interval forecasting can quantify the uncertainty of carbon price changes, and this paper
uses a hybrid kernel function-based GPR model to make interval forecasts of carbon
prices. Interval forecasting can provide traders and policy makers with more valuable
information to reduce the risks they face in their business investment and decision-
making efforts.

(4) In this paper, an intelligent optimized nonlinear integrated carbon price forecasting
framework based onmulti-factor and two-stage feature dimension reduction is proposed
for the first time, which has excellent forecasting performance and robustness.
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The following is the rest of the paper’s structure: A literature review is presented in Sect. 2.
Section 3 presents the hybrid prediction framework proposed in this paper. The data sources,
pre-processing, and prediction performance evaluation measures are discussed in Sect. 4.
Section 5 discusses the empirical analysis and comparative study. Finally, Sect. 6 describes
the research conclusions and future research outlook.

2 Literature review

Carbon price prediction models can be grouped into three types in the existing literature: sta-
tisticalmodels, AImodels, and hybridmodels. In addition, interval forecasting can effectively
quantify the uncertainty in financial markets, while some researchers often neglect interval
forecasting of carbon prices. This section provides a detailed review of the carbon price
forecasting literature and explores various types of carbon price point forecasting models as
well as interval forecasting models.

2.1 Statistical predictionmodels

Traditional statistical models analyze historical data and infer relationships in the data to
obtain better prediction results. Common statistical models include autoregressive integrated
moving average (ARIMA) model and generalized autoregressive conditional heteroskedas-
ticity (GARCH)model. Byun andCho (2013) used the generalized autoregressive conditional
heteroskedasticity (GARCH) models to achieve a forecast of the volatility of the next day’s
carbon price. Çanakoğlu et al. (2018) combine econometric time series, institutional transfor-
mation, and vector autoregressive models to analyze potential joint relationships in carbon
prices with fuel prices and electricity prices. García-Martos et al. (2013) used a dynamic
factor model to extract common features in carbon price volatility and effectively simulated
carbon price trends using a multivariate GARCH model. Segnon et al. (2017) verify that
GARCH based on two-state Markov-switching can achieve short and long-term forecasts of
carbon price fluctuations in the EU.Although statistical models can produce good predictions
when the time series satisfy certain classical statistical assumptions, this limits their ability
to handle nonlinear nonstationary series (Sun et al., 2021). To overcome the effect of non-
linearity on carbon price prediction, researchers have tried to use multivariate linear models
to predict carbon prices, such as MIDAS linear regression (Zhao et al., 2018). However,
in the face of complex carbon prices, statistical models struggle to achieve the predictive
performance expected by researchers.

2.2 AI predictionmodels

AI models have powerful nonlinear learning ability, which can effectively fit the nonlinear
features hidden in the time series (Shajalal et al., 2021). Typical AI models include ANN,
least squares support vector regression (LSSVR), multi-layer perceptron (MLP) neural net-
work, and radial basis function neural networks (RBFNN). Mori and Jiang (2008) proposed
an ANN-based carbon price prediction method and successfully applied it to real carbon
price data. Fan et al. (2015) analyzed the chaotic characteristics of carbon prices and devel-
oped an MLP model to characterize the strong nonlinear characteristics of carbon prices.
However, while these typical AI models can effectively handle nonlinear features, they have
difficulty learning short and long-term dependent information in time series. The recurrent
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neural network (RNN) differs from traditional neural networks in that it not only learns non-
linear features in data, but also has the ability to remember information (Şaylı & Yılmaz,
2017). Therefore, the RNN is widely used in research areas such as natural language pro-
cessing, time series prediction, and especially nonlinear time series. Chen et al. (2013) used
RNN to predict flood flows and found that RNN can memorize dependencies in time series
and obtain better prediction performance. However, RNN is not perfect and suffers from the
defects of gradient disappearance and the inability to handle long-term dependencies. There-
fore, the researchers proposed a variant RNN, Long Short Term Memory (LSTM) neural
network (Peng et al., 2022). Zhang and Xia (2022) used LSTM to predict the price of EU
carbon emission allowances and demonstrated that the prediction performance and robust-
ness of LSTM are stronger than statistical models. To forecast carbon emissions in China,
Huang et al. (2019) used back propagation (BP) neural networks, Gaussian process regres-
sion (GPR), and LSTM, respectively. The experimental results demonstrate that LSTM can
be effectively applied to carbon emission prediction with optimal prediction performance.
When dealing with complex and volatile carbon markets, a single AI model does not have
sufficient predictive stability to achieve the predictive accuracy that researchers expect for
carbon prices in different markets. To overcome the shortcomings of statistical models and
single AI models, the researchers introduced hybrid models into the carbon price prediction
study.

2.3 Hybrid predictionmodels

In existing research, there are two main types of hybrid models. One type combines dif-
ferent prediction models (Wang et al., 2022a, 2022b), and the second type combines data
pre-processing techniques with prediction models (Li et al., 2021b). Hybrid models based
on decomposition integration strategies can explore the complex intrinsic characteristics of
carbon prices from different perspectives (Jiang et al., 2022; Zhu et al., 2019a, 2019b). The
decomposition integration model uses a signal decomposition algorithm to pre-process com-
plex time series and decompose them into a series of subseries with simpler structure and
smoother trend. The decomposed subseries are then predicted separately, and the prediction
results are integrated to obtain better prediction performance. Zhu et al. (2015) found that
decomposing the carbon price allows the characterization of the carbon price at different
scales and thus captures the trend of the carbon price more effectively. Wavelet transform
(WT) (Momeneh & Nourani, 2022) and empirical modal decomposition (EMD) (Yu et al.,
2008) are two popular signal decomposition algorithms. Sun et al. (2018) usedWT to decom-
pose and remove the high-frequency components from the carbon price data, and then used
the partial autocorrelation function (PACF) to analyze the correlation between historical car-
bon price data and predict it. Zhu et al. (2013) used EMD to decompose the carbon price into
several more stable and simple components. Then generalized ARCH (GARCH) model and
the LSSVR were used for forecasting. The experiments demonstrate that GARCH-LSSVR
outperforms statistical models and single artificial intelligence models in terms of predictive
performance. Zhu et al. (2017) used the particle swarm algorithm (PSO) optimized LSSVR
to predict each decomposition component separately based on EMD decomposition.

Although these decomposition algorithms can effectively decompose carbon price series,
they also have unavoidable drawbacks. The decomposition performance of WT depends on
the subjective choice of wavelet basis functions and decomposition levels. EMD does not
require the choice of basis functions, but it also has inherent problems such as mode mixing
and endpoint effects. To address the deficiencies in decomposition algorithms such as WT
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and EMD, variational mode decomposition (VMD) was proposed (Dragomiretskiy & Zosso,
2014). Compared with WT and EMD, VMD can achieve adaptive decomposition of signals
by constructing and solving constrained variational problems, effectively avoiding problems
such as mode mixing and boundary effects, and better performing complex signal decom-
position. Guo et al. (2022) applied the VMD algorithm to financial time series forecasting
research and found that the forecasting performance of VMD-basedARIMAhas a substantial
improvement over ARIMA. Liu et al. (2022) used WT, EMD, and VMD algorithms to fore-
cast the carbon price separately. It was demonstrated that the VMD-based forecasting model
significantly outperformed WT and EMD. Chai et al. (2021) achieve an effective prediction
of the carbon price in China based on VMD and extreme learning machine (ELM) and argue
that the carbon price in China will generally increase during the recovery phase of covid-19.

2.4 Interval predictionmodels

Hybrid models are effective in predicting carbon prices, but most studies have only predicted
point-value time series of carbon prices. When applied to the real carbon market, the point
forecasts inevitably have varying degrees of bias and do not reflect the uncertainty of the
carbon price market (Xiong et al., 2015). The interval forecast results contain more variable
information and can quantify the uncertainty of the forecast results and give the interval of
variation of the forecast results (Maia and de Carvalho, 2011).

Interval forecasting has been widely used in research areas such as load forecasting (Wang
et al., 2022a, 2022b) andwind speed forecasting (Khodayar et al., 2022). The existing interval
forecasting methods include three main types: quantile regression method, interval construc-
tion method, and probabilistic interval prediction method. The quantile regression method
can obtain the interval of change in the point forecast under a given confidence interval by
calculating different quantile points of the data. Bremnes (2004) predicted the interval of
variation of wind power by the local partial regression. However, quantile regression needs
to determine the suitable regression model and quantile points based on the data, and it is
difficult to maintain good prediction accuracy in long-term forecasting. The interval con-
struction methods typically use point prediction results to simulate interval results. Souza
et al. (2017) constructed two regression models and simulated the upper and lower bounds
of the interval by parametric methods. Quan et al. (2014) output the prediction interval for
wind power using an ANN based on upper and lower bound estimation (LUBE). Although
the interval construction method can obtain effective prediction results, it relies on a large
and complete amount of data. Its computational complexity is high and difficult for engineer-
ing applications. The probabilistic interval forecasting method is mainly based on Bayesian
theory. The distribution and expectation of the forecast values can be derived by constructing
a distribution model of the forecast quantities, while obtaining interval forecasting results
at any confidence level (Li et al., 2022a, 2022b). Gaussian Process Regression (GPR), a
machine learning algorithm based on Bayesian theory, can predict the expected value of a
location quantity and its distribution. The interval prediction performance of GPR as a prob-
abilistic prediction technique has been proven in several fields (). Zhang et al. (2016) used
an autoregressive model to extract the overall structure of wind speed and then used GPR
for prediction. The study proved that the model could obtain satisfactory point and interval
predictions. Peng and Bai (2019) used GPR for spatial orbit prediction and generated high
performance orbit variation interval prediction results. Although GPR can obtain effective
interval prediction results, there is still room for improving the prediction performance and
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prediction stability ofGPR for specific research areas. Therefore, interval prediction of carbon
prices remains a significant challenge that requires additional attention from researchers.

3 The proposed hybrid prediction framework

For carbon price forecasting, an innovative decomposed integrated intelligent optimization
framework based on multi-factor and two-stage feature dimension reduction is proposed in
this study. This study’s hybrid prediction framework is divided into three stages: data pre-
processing, prediction and nonlinear integration, and interval prediction. Figure 1 depicts the
proposed hybrid prediction framework’s flow chart.

3.1 Data pre-processing stage

The data pre-processing stage can be divided into three parts. The first part uses the VMD
algorithm to decompose carbon price into several components. The second part uses the SAE
algorithm to reconstruct carbon price decomposition components to reduce the computational
complexity of the prediction model. The third part proposes a two-stage feature dimension
reduction technique for feature selection and feature extraction of carbon price influencing
factors.

3.1.1 Data decomposition

As a non-recursive optimal decomposition technique, VMD overcomes the deficiencies of
WT and EMD, and has stronger signal decomposition capability. In this paper, the carbon
price sequence Z(t) is decomposed into k number of band-limited intrinsic mode functions
with eachmodemt (k) of a center frequency c(k) by theVMDalgorithm.TheVMD’s principle
is to assume that the center frequency bandwidth of each mode is limited and to minimize
the sum of their frequency bandwidths under the condition that the sum of each mode equals
the original signal.

The unilateral spectrum of eachmodal functionmt (k) is found using theHilbert transform.
Then the spectrum of the mode function is corrected using exponential correction and shifted
to the baseband region.Next,Gaussian smoothing is usedon the signal to obtain the bandwidth
of each modal function.

min
mt (k),c(k)

{
K∑
i�1

∥∥∥∥∂t [(δ(t) +
j

π t
)mt (k)]e

− jc(k)t
∥∥∥∥
2

2

}
(1)

s.t .
∑K

i�1
mt (k) � Z (t) (2)

where Z (t) denotes the original carbon price time series,mt (k) represents the kth decomposi-
tion mode, c(k) is the center frequency, t implicates the time script, δ(t) denotes the unit pulse
function, and ∂t refers to the partial derivative of the function for time t . The above problem
can be transformed from the objective function to an unconstrained optimization problem by
introducing a quadratic penalty term as well as a Lagrange multiplier. For a more detailed
rationale of the VMD algorithm, the reader can refer to the literature (Dragomiretskiy &
Zosso, 2014).

Eventually, the carbon price is decomposed into several simpler and smoother subse-
quences by the VMD, which reduces the complexity and increases the predictability of the
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Fig. 1 Flowchart of the proposed model
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Fig. 2 The structure of SAE

carbon price series. However, there are correlations and invalid information between these
decomposition components, so to reduce the complexity of the calculation, they are further
processed using SAE in this paper.

3.1.2 Data reconstruction

The traditional autoencoder (AE) model, as a machine learning algorithm for data denoising
and dimensionality reduction, usually consists of a three-layer network: input layer xa , hidden
layer h, and output layer xb. The AE uses the original data as the target output for training,
hoping to reconstruct a complete sequence of the original data using fewer data inputs. In
practical applications, more attention is paid to the xa → h conversion process, so AE
can be used to extract the effective features of the carbon price decomposition components.
However, it is difficult to obtain a better data representation with a single AE when dealing
with high-dimensional and nonlinear data.

The Stacked autoencoders (SAE) consist of multiple AEs stacked on top of each other,
capable of learningmultiple representations of the original input data layer by layer, andmore
suitable for nonlinear data than AE (Xu & Ren, 2022). Figure 2 depicts the SAE structure. In
this paper, the SAE model is constructed by layer-by-layer training to learn deeper and more
meaningful information in the carbon price decomposition components, while removing the
noisy signals. Ultimately, the reconstruction of the carbon price decomposition components
is achieved.

3.1.3 Two-stage feature dimension reduction

Multiple potential carbon price influencing factors are introduced into the forecasting analysis
in this paper to obtain better carbon price predicting results. Based on this, a two-stage feature
dimension reduction method based on random forest (RF) and SAE is developed in this
paper. RF is based on an improved bagging ensemble algorithm, which is a typical machine
learning method. Unlike other traditional linear regression models, random forests can fit
complex nonlinear relationships and measure the importance of variables (Ye et al., 2019).
This is because RF constructs decision trees by selecting the best splitting points in a random
subspace, and the best attributes are computed according to certain principles for selection, so
this process is a feature selection process. This paper first uses RF to calculate the importance
magnitude of different potential influencing factors for the first stage of the feature selection
process.
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Each tree in the random forest is a CART decision tree, and the trees are selected down the
feature split nodes based on the corresponding Gini coefficients. The Gini value is denoted
by GI, and the importance score of the variables in the random forest is denoted by VIM.
Suppose there are n features: x1, x2, x3, ..., xk . The Gini index score VIM of each feature xi
is the average change of the node-split impurity of the ith feature over all decision trees in
the random forest (Wen & Yuan, 2020). If the VIM score is more engaged, it means that the
feature is more influential. The Gini index is calculated as follows.

GIn � 1 −
∑K

K�1
p2nk (3)

In this formula k denotes the number of categories and pnk denotes the proportion of
category in the node n. And the importance of feature xi at the node n is:

V IMGini
in � GIn − GIx − GIy (4)

In the equation, GIx and GIy represent the Gini index of the two new nodes after the
branch, respectively. Assuming that there are m trees in the random forest, the sum of the
importance of all features in the whole forest is calculated to obtain the feature importance
score of the ith feature.

V IMi � V IMGini
in∑m

m�1 V IMGini
in

(5)

Finally, the importance scores of all features are normalized to obtain the importance
score of each feature. Higher feature importance scores indicate that the influence factors
have a more significant impact on carbon price fluctuations. To further reduce the complexity
of the data, this paper uses SAE to perform the second stage of feature extraction on the
feature subset obtained by RF selection. The meaningful information in the feature subset is
further extracted by eliminating the noisy signals throughSAE.Finally, the optimal features of
potential influencing factors of carbonprice are obtained after the two-stage feature dimension
reduction process.

3.2 Prediction and nonlinear integration stage

In the prediction and nonlinear integration stages, BiLSTM is chosen as the prediction model
in this paper, and the hyperparameters of BiLSTM are optimized using the CS algorithm to
obtain better prediction performance. The CS-BiLSTM is used to predict each reconstructed
component, and the prediction results are nonlinearly integrated using the CS-BiLSTM to
obtain the final carbon price point prediction results.

3.2.1 Bi-directional long short-termmemory

Hochreiter and Schmidhuber presented the LSTM as an enhanced RNN that addresses the
problem of gradient disappearance and long-term memory weakness. The LSTM enhances
the RNN with three gate controllers, namely “input gate,” “forget gate,” and “output gate,”
allowing it to learn long-term dependent knowledge. The LSTM considers the temporal and
nonlinear characteristics of the data, allowing it to effectively predict nonlinear time series.
Figure 3 depicts the LSTM’s structure.

ft � σ1
(
w f ,1xt + w f ,2xt−1 + b f

)
(6)

123



Annals of Operations Research

Fig. 3 The structure of LSTM

it � σ1
(
wi,1xt + wi,2ht−1 + bi

)
(7)

ot � σ1
(
wo,1xt + wo,2ht−1 + bo

)
(8)

c̃t � σ2
(
wc,1xt + wc,2ht−1 + bc

)
(9)

ct � ft ∗ ct−1 + it ∗ c̃t (10)

ht � ot ∗ σ2(ct ) (11)

where σ1 is the sigmoid function and σ2 is the hyperbolic tangent function. Then, ft , it and ot
represent the forget gate, input gate, and output gate, respectively. ct and c̃t represent the cell
state and the intermediate cell state at moment t . xt and ht are the input and output values of
the hidden layer, respectively. The weights and biases of the forget gates, input gates, output
gates, and cell states are represented by w and b.

The BiLSTM consists of two LSTMs superimposed in the forward and reverse directions,
and the structure of the BiLSTM model expanded along the time axis at moments t − 1,
t and t + 1 is shown in Fig. 4. Where X represents the model input and Y represents the
model output. The forward LSTM layer can be viewed as a forward computation from the

Fig. 4 The structure of BiLSTM

123



Annals of Operations Research

last moment to the end moment, and the backward LSTM layer can be viewed as a reverse
computation from the last moment to the start moment. Both LSTM layers are processed in
the same way during the computation, and the network weights are updated by the forward
and backward propagation of the neurons. It allows BiLSTM to consider past and future data
information during the mapping process between input and output sequences, which is more
effective than one-way LSTM when dealing with time-series data.

3.2.2 Cuckoo search algorithm

Cuckoo Search (CS), a stochastic global search technique for populations based on simulated
bird activity, was proposed by Yang and Deb (2014). CS is based on cuckoo parasitic brood-
rearing behavior and can be enhanced by Lévy flights rather than basic isotropic random
wandering. It can be widely used in optimization problems such as engineering structures
and neural network training. Related studies show that this algorithm may be more effective
than genetic algorithms (GA), PSO, and other algorithms (Yildiz, 2013). Several investi-
gations have revealed that many animals and insects exhibit flight behavior similar to Lévy
flights with power-law patterns. Lévy flights improve the CS algorithm compared to the basic
isotropic random walk technique. To simplify the definition of standard CS, the following
three idealized rules are presented in this paper:

(1) Each cuckoo positions a single egg on a nest, which has been chosen randomly.
(2) The best nests and eggs are passed along to the following generation.
(3) The number of available host nests is fixed, and the host discovers the cuckoo’s eggs

with probability pα ∈ (0, 1). The host has the option of either destroying the egg or
abandoning the previous nest and constructing a new one.

The algorithm employs a well-balanced mix of a local random walk controlled by the
parameter pα and a global exploratory random walk controlled by the parameter pα . The
following is the local random walk principle:

xt+1i � xti + αs ⊗ H(pα − ε) ⊗
(
xtj − xtk

)
(12)

where xti and xtj are two different solutions chosen by random substitution, and H (·) is a
Heaviside function. In this formula, ε is a random number drawn from a uniform distribution,
s is the step size, and⊗ represents the point product of the two vectors. Furthermore, a global
random walk using Lévy flights:

xt+1i � xti + αL(s, λ) (13)

L(s, λ) � λ	(λ) sin(πλ/2)

π

1

s1+λ
, (s � s0 > 0) (14)

where α > 0 is the step scaling factor because Lévy flights have infinite mean and variance.

3.2.3 BiLSTM optimized by the CS algorithm

As a modified recurrent neural network, BiLSTM fits the model by updating the weights and
biases based on the hyperparameters. Therefore, the prediction accuracy of BiLSTM is very
sensitive to the setting of hyperparameters. It is shown that increasing the number of neurons
in BiLSTM has a direct impact on the enhanced learning ability of the model, while the
BiLSTM training time and overfitting risk are increasing. A suitable Batch size can improve
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the computational efficiency and convergence accuracy of BiLSTM, too small may lead to
long computation time and difficult convergence of the model, too large may fall into local
extremes. In addition, BiLSTM may be overfitted when learning too long series, and a part
of neurons are eliminated randomly by adding Dropout layer to effectively improve the gen-
eralization ability and robustness of BiLSTM. Previous research has relied on repeated trials
to determine neural network hyperparameters. Obtaining the ideal hyperparameters for the
neural network model is not only time-consuming and labor-intensive, but also complicated.

Related studies have verified that the CS algorithm is more effective than other population
algorithms (Yildiz, 2013). The CS algorithm enables the BiLSTM model to determine the
optimal hyperparameters quickly and accurately and realize the effective combination of the
BiLSTMmodel network structure and carbon price data features. First, according to literature
references and experimental studies, the BiLSTM model with three implicit layers is found
to have the best prediction performance for carbon price data. Second, “softsign” is used as
the activation function of BiLSTM instead of “tanh” because “softsign” is faster and less
prone to saturation. In addition, a Dropout layer is added between each BiLSTM layer, and
an early stopmethod is introduced to prevent overfitting. After determining the basic network
structure of BiLSTM, the CS is used to optimize the three BiLSTM hyperparameters: batch
size, learning rate, and units. The location information of the nest is randomly initialized
according to the range of the hyperparameters.

Next, a BiLSTMmodel is constructed based on the hyperparameter values corresponding
to the bird nest locations. The trained model is predicted using the validation data, and the
mean absolute error (MAE) of the predicted model on the validation data set is used as the
fitness function. The fitness function f is formulated as follows.

f � 1

n

∑n

i�1

∣∣x(t) − x̂(t)
∣∣ (15)

where n is the number of samples in the validation set, x(t) is the true value of the t-th
validation data, and x̂(t) is the predicted value of the t-th validation data.

Then, the position is updated according to the values of nesting fitness in various clusters.
The optimal value of the optimization objective is obtained when the termination condition
is reached. If not, the population is divided based on the nest position information, and
the fitness is calculated and updated until the termination requirement is met. Finally, the
CS-BiLSTM model with optimal hyperparameters is obtained.

In this paper, different reconstructed components are modeled and predicted separately
using the CS-BiLSTM model. Unlike the previous linear integration, this paper uses CS-
BiLSTM for nonlinear integration of the prediction results of the reconstructed components.
The final point prediction results of carbon price are obtained. The CS-BiLSTM model’s
pseudo-code is provided below.
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3.3 Interval prediction stage

In the interval prediction section, this paper uses the GPR model to obtain the interval
prediction results of the carbon price. GPR is based on Bayesian theory and is a kernel-based
approach to solving regression problems (Jin et al., 2021). Compared to neural networks,
GPR has been widely used in areas such as power and renewable energy because of its
advantages of rapid deployment and hyperparametric adaptive acquisition of probabilistically
meaningful expected outputs (Petelin & Kocijan, 2014). Therefore, this paper chooses to use
GPR as an interval prediction model for carbon prices to quantify the uncertainty of the point
prediction results and to give probability intervals for carbonpricefluctuations. The prediction
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performance of building a GPR model mainly depends on the setting of the kernel function.
Researchers often use GPR based on a single kernel function for their studies. However, for
complex nonlinear carbon price series, it is difficult for a single kernel function to effectively
describe its complex fluctuations. Therefore, in this paper, a hybrid kernel function-based
GPR is constructed to achieve effective carbon price interval prediction. There are three
common kernel functions in GPR as follows.

KSE
(
xi , x j

) � exp

(
−d

(
xi , x j

)2
2l2

)
(16)

KRQ
(
xi , x j

) �
(
1 +

d
(
xi , x j

)2
2αl2

)−α

(17)

KMatern
(
xi , x j

) � 1

	(v)2v−1

(√
2v

l
d
(
xi , x j

)v
Kv

(√
2v

l
d
(
xi , x j

))
(18)

where KSE is the squared exponential (SE) kernel function, KRQ is the rational quadratic
(RQ) kernel function, and KMatern is theMatern kernel function. d(·, ·) denotes the euclidean
distance. α is the scale mixing parameter representing the shape of the kernel function. l is
a hyperparameter representing the length of the kernel. In addition, the modified Bessel and
gamma functions are Kv(·) and 	(·), respectively, and v is used as the smoothness of the
control function. To compare the effects of different kernel functions on interval predictability,
the above three single kernel functions and three hybrid kernel functions are used for analysis
in this paper, for a total of six kernel functions. The hybrid kernel functions Khybrid (xi , x j )
are obtained by combining two single kernel functions and are constructed as shown below,
where Ka(xi , x j ) and Kb(xi , x j ) are two of the three single kernel functions.

Khybrid
(
xi , x j

) � Ka
(
xi , x j

)
+ Kb

(
xi , x j

)
(19)

3.4 Evaluation criteria

Researchers have presented various error evaluation metrics to quantify prediction accuracy,
and this paper considers the mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE) to measure the point prediction accuracy of the
proposed model. In addition, the interval prediction results are evaluated using the predicted
interval average width (PIAW) and the predicted interval coverage probability (PICP). Under
a certain confidence level, if the PIAW is smaller and the PICP is larger, it means that
the interval prediction is more valid. The exact formula is represented in Table 1, where k
represents the number of test sets in the data, ŷ is the final prediction, and y is the true value
of the test set, Ln and Un are the lower and upper value of the forecasting interval, N is the
interval prediction’s length, and Cn means a Boolean value.

4 Data

4.1 Data collection

China gradually started carbon trading pilot programs in 2011, with a total of eight carbon
trading pilots as of December 31, 2021. Among them, the pilot in Fujian Province started
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Table 1 Evaluation metrics

Metric Definition Equation

MAE Mean absolute error MAE � 1
k

∑k
i�1

∣∣yi − ŷi
∣∣

RMSE Root mean square error
RMSE �

√∑k
i�1 (yi−ŷi )

2

k

MAPE Mean absolute percentage error MAPE � 1
k

∑k
i�1

∣∣∣ ŷi−yi
yi

∣∣∣ × 100%

PIAW Predicted interval average width
P I AW � 1

N

N∑
n�1

(Un − Ln)

PICP Predicted interval coverage probability
P ICP � 1

N

N∑
n�1

cn , cn �
{
1, An ∈ [Ln ,Un ]

0, An /∈ [Ln ,Un ]

trading in early 2017, and since it started late and only 538 carbon price data are publicly
available on trading days, this paper does not consider the data of Fujian pilot. To verify
the validity of the proposed hybrid framework, we select daily carbon price data from seven
carbon trading pilots for an empirical study. For better analysis, the time windows of the
carbon price data of the sevenmarkets are aligned in this paper, and the daily carbon price data
fromJune19, 2014, toDecember 31, 2021, are all selected, and the dataset is obtained from the
respective exchanges. To better train the prediction model, verify the model’s generalization
ability and prevent overfitting, in this paper, all carbon trading pilot data are separated into
training, validation, and test sets in the ratio of 6:2:2. The total sample size, training set
sample size, validation set sample size, and test set sample size of the seven carbon trading
pilot data are shown in Table 2.

Figure 5 shows the carbon price trends of three carbon tradingmarkets and their geograph-
ical locations. The relevant statistical indicators for the seven market carbon price data are
shown in Table 3, containing mean, maximum, minimum, median, and standard deviation.
Considering that the different carbon trading markets are still in the pilot stage, the trading
dates are not exactly the same as other financial markets, and there are some missing values.
Therefore, the missing data for the date when carbon trading was not performed are removed
in this paper. In addition, the data are normalized using typical normalization processingmeth-
ods. The dimensionless data can improve the efficiency of the model operation, and solve the

Table 2 The sample size of data from seven carbon trading pilots in China

Dataset Sample size Training set Validation set Test set

Beijing 1702 1021 340 341

Tianjin 1646 987 329 330

Shanghai 1693 1015 339 339

Shenzhen 1817 1090 363 364

Guangdong 1854 1112 371 371

Hubei 1833 1099 367 367

Chongqing 1692 1015 338 339
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Fig. 5 Carbon price data for the seven carbon trading pilots
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Table 3 Statistical indicators of carbon prices

Dataset Mean Max Min Median Std

Beijing 60.00 107.26 18.63 53.40 16.54

Tianjin 17.59 62.38 7.00 15.05 6.69

Shanghai 31.16 49.98 4.20 35.30 11.99

Shenzhen 33.21 79.00 1.00 34.79 13.87

Guangdong 22.89 71.09 8.10 19.53 10.82

Hubei 24.77 53.85 10.07 25.21 7.37

Chongqing 18.59 47.52 1.00 16.13 11.86

problem of failure to converge that may be caused by odd sample data. The normalization
formula is as follows, where x represents the original data and x ′ is the normalized data.

x ′ � x − min(x)

max(x) − min(x)
(20)

4.2 Potential influencing factors

Related research showed that variations of carbon prices are impacted by factors like energy
andweather (Dutta et al., 2018;Hao&Tian, 2020).When selecting factors influencing carbon
price, its data must meet the following characteristics: (1) The data must be real and valid and
have a large enough data sample. (2) The factors must be able to influence the fluctuation of
the carbon price to some extent. Considering the above issues to the relevant literature, this
paper selects the influencing factors in four directions: similar products, energy structure,
economic factors, and environmental factors.

(1) Similar products
The international carbon emissions tradingmarket is relativelymature and has important
implications for the Chinese carbonmarket, which is not yet fully open. Similar products
such as EU emission allowances (EUA) and certified emission reduction (CER) can be
used to fulfill carbon emission reduction obligations. However, since 2013, the EU no
longer accepts CER project indicators from emerging countries such as China, and CER
data will no longer be publicly available after April 2021. Therefore, this paper chooses
EUA to react to the impact of similar products on China’s carbon price, using data from
the Wind database.

(2) Energy structure
Energy is often considered to be the factor that most directly affects the price of carbon.
Furthermore, West Texas Intermediate crude oil futures settlement prices are chosen
to reflect crude oil prices, natural gas prices from the New York Mercantile Exchange,
coking coal futures, and coke futures settlement prices from the Dalian Commodity
Exchange, and power coal futures settlement prices from the Zhengzhou Commodity
Exchange. The data used are from the Wind database and the Choice database.

(3) Economic factors
The USD/CNH exchange rate and the China Industrial Index (CHII) have been selected
to represent the effect of major economic factors. The data used are from the Wind
database and the Choice database.
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(4) Environmental factors
Air quality index (AQI), PM2.5, PM10, SO2, CO, and NO2 were selected as environ-
mental factors. The data used were obtained from data.cma.cn.

4.3 Unstructured data based on web search index

Toachieve effective forecasting offinancial data, researchers havebegun to paymore attention
to the impact of investor behavior on financial markets. Bank et al. (2011) find that an
increase in Google keyword searches correlates with increased stock trading activity and
liquidity, and they claim that Google searches minimize asymmetric information costs. Some
studies have even concluded that there is a correlation between the volume of carbon-related
keyword searches on the Internet and the volatility of carbon prices (Hintermann et al., 2016).
Therefore, unstructured data based on web search can respond to some extent to changes in
investor behavior, investor attention to the market, and asymmetric information costs.

Given that Google exited the Chinese market in 2010, its impact on the Chinese market is
minimal. And Baidu, the search engine with the largest market share in China, is more rep-
resented in the country. Therefore, this paper selects the Baidu index as an unstructured data
source based on web search index to provide more real-time and responsive information on
investors’ behavior. In this paper, the Baidu indexes of twenty-four carbon-related keywords
were selected from the directions of carbon finance, low-carbon life, and environmental
protection, including carbon footprint, carbon tax, and greenhouse effect. All keywords are
shown in Table 4, and the Baidu indices of keywords are obtained from the official website
of the Baidu index (https://index.baidu.com/).

In addition, this paper uses a concise and effective mutual information method to evaluate
the degree of association betweendifferent keywords and carbonprice to determine theweight
of each keyword to construct a comprehensive index. Assuming that xi is the Baidu index
of the ith keyword and the target is the carbon price time series y, the mutual information
between the two variables is defined as follows.

MI (xi , y) �
∑n

i�1

∑m

j�1
p(xi , y j ) log2

(
P

(
xi , y j

)
P(xi )P

(
y j

)
)

(21)

Table 4 Baidu Index keywords

Carbon-related keywords

Low carbon Carbon tax Smog Carbon dioxide
emissions

Low-carbon economy Carbon emissions trading Greenhouse gases Pollution
discharge

Carbon footprint Carbon sink Greenhouse gas emissions Clean energy

Emission reduction Carbon neutralization Greenhouse effect Cleaner
production

Carbon emission Carbon trading Air pollution Low-carbon
environmental
protection

Carbon emissions Carbon dioxide Atmospheric pollutant Low carbon life
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Table 5 The details of the
influences on the carbon price in
China

External factors Factor name Factor
symbol

Similar products European union allowance
futures

EUA

Energy structure Crude oil price WTI

Natural gas price Nature Gas

Coke price Coke

Steam coal price Steam coal

Coking coal price Coking coal

Economic factors USD/CNY exchange rate USD_CNY

China Industrial Index CHII

Environmental
factors

Daily AQI AQI

Daily PM2.5 PM2.5

Daily PM10 PM10

Daily SO2 SO2

Daily CO CO

Daily NO2 NO2

Web search index Comprehensive web index Baidu

Then the average mutual information value of all keywords is calculated, and the weight
is determined for each keyword based on Eq. (22), whereWi is the weight of the ith keyword.
Finally, the comprehensive web index Baidu is obtained.

Wi � MI (xi , y)
1/
24

∑24
n�1 MI (xi , y)

(22)

Baidu =
∑

Wi · xi (23)

In summary, a total of fifteen potential influencing factors of the carbon price are selected
in this paper, and the information of all influencing factors is displayed in Table 5.

5 Case analysis

5.1 Nonstationary and nonlinear data set tests

In this research, the Augmented Dickey-Fuller (ADF) and Brock-Decher-Scheikman (BDS)
are used to assess the original carbon price series to confirm its nonlinearity and nonstation-
arity. The results of these two tests on the seven pilot datasets are shown in Tables 6 and 7.
According to the ADF test results, the carbon price of all pilots are nonstationary within the
10%, 5%, and 1% levels. Moreover, the p-values of the BDS tests on different embedded
dimensions are much less than 0.01, which also proves that the carbon price series of all
pilots are nonlinear at the 1% level. As shown above, all pilots’ original carbon price series
are nonstationary and nonlinear.
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Table 6 Test results of ADF

Carbon prices ADF statistic 1% 5% 10% Prob

Beijing − 2.0172 − 3.4342 − 2.8632 − 2.5676 0.2527

Tianjin − 2.2679 − 3.4343 − 2.8633 − 2.5677 0.1763

Shanghai − 1.6093 − 3.4342 − 2.8632 − 2.5676 0.4788

Shenzhen − 2.2555 − 3.4340 − 2.8631 − 2.5676 0.1867

Guangdong − 1.6393 − 3.4339 − 2.8631 − 2.5676 0.4626

Hubei − 1.2216 − 3.4339 − 2.8631 − 2.5676 0.6642

Chongqing − 2.0095 − 3.4342 − 2.8632 − 2.5676 0.2542

5.2 Data decomposition and reconstruction

The carbon price has strong nonlinearity and non-smoothness, and the VMD technique can
weaken the non-smoothness of the series and reduce the prediction difficulty. Referring to
related literature studies (Dragomiretskiy&Zosso, 2014), in the first stage, this paper uses the
VMD decomposition algorithm to decompose the original carbon price series into several
components. Taking the three carbon trading pilots, Beijing, Shanghai, and Tianjin, as an
example, the components obtained from the decomposition of the original carbon price,
arranged in order from the lowest frequency to the highest frequency, are displayed in Fig. 6.
Then, in this paper, the decomposed components are further extracted and reorganized using
SAE. This not only removes the noise signal from the decomposed components and extracts
the effective features, but also reduces the complexity of the prediction model. Through an
empirical study, it is found that the SAE model containing two hidden layers to reconstruct
the data works best. In addition, the training of SAE utilizes an unsupervised layer-by-layer
greedy method so that the parameters of each hidden layer are locally optimal. Finally, the
decomposed modal component sequences are reconstructed into three sub-series, E1, E2,
and E3, using SAE. Taking the three carbon trading pilots in Beijing, Shanghai, and Tianjin
as examples, the results of the carbon price series using the VMD-SAE method are shown in
Fig. 6.

5.3 Two-stage feature dimension reduction

In this paper, a total of fifteen exogenous variables are introduced by considering the impact
of potential influences on carbon price forecasting. To solve the problems of correlation,
complexity, and redundancy in exogenous variables, a two-stage feature dimension reduction
method based on RF-SAE is developed in this paper. First, the feature importance score of
each exogenous variable is calculated usingRF, and the feature subset is obtained by selecting
the top ten features in the feature importance score. Taking the three carbon trading pilots in
Beijing, Shanghai, and Tianjin as examples, the histogram of the characteristic importance
scores of different influencing factors is shown in the figure.

It is clear that the factors that have a higher degree of influence are not exactly the same in
different carbon trading pilots. This is due to the differences in socioeconomic development,
industrial structure and other aspects of different carbon trading pilot provinces and cities. To
better explore how China’s carbon trading market will develop, each carbon trading pilot has
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Fig. 6 Results of the VMD-SAE method

set different emission control industries, carbon quota allocation systems, and control thresh-
olds. For example, Beijing and Shanghai include a wide range of emission control industries,
including power, construction, and service industries, while Tianjin mainly includes high-
emission industries such as power, steel, and chemicals. Second, Beijing’s carbon emission
allowances consist of year-by-year unpaid allocations and reserved paid allocations, while
Shanghai’s carbon emission allowances consist of a three-year allocation and occasional paid
allocations. At the same time, different markets levy different default penalties on overdue
companies, with Beijing being fined three to five times the average market price for default,
Shanghai being fined RMB 50,000 to 100,000, and Tianjin only being given a deadline to
make corrections. Therefore, although bulk products such as crude oil and coke will directly
cause changes in the cost of carbon credits, different carbon trading pilots have different
emission control sectors and have different impacts on carbon prices. Influenced by pol-
icy differences such as default mechanisms and government intervention, the EU carbon
price also has different guiding effects on the carbon price of different carbon trading pilots.
Therefore, the impact of different factors on carbon prices has regional variability.

This paper uses RF to select the top ten ranked exogenous variables as a subset of features
for the carbon prices of different carbon trading pilots. It ensures that the selected feature
subset has sufficient influenceon thefluctuationof the carbonprice.Then, theSAEmodelwith
layer-by-layer greedy training is used to mine the effective features in the feature subset and
remove the noisy signals. Finally, the three optimal feature subsets F1, F2, and F3 are obtained
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Fig. 7 Two-stage feature dimension reduction results

after processing and incorporated into the final prediction model. Taking Beijing, Shanghai
and Tianjin as examples, Fig. 7 shows the three optimal feature subsequences obtained by
using the two-stage feature dimension reduction method to process the exogenous variables
of the three carbon trading pilots.

5.4 Prediction and nonlinear integration

In the prediction part, BiLSTM is used to build separate prediction models for the different
components. Meanwhile, the prediction performance of BiLSTM is very sensitive to the
setting of its hyperparameters. In this paper, the CS algorithm is used instead of empirical
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tuning, and the hyperparameters of BiLSTM are intelligently sought to obtain the optimal
BiLSTM prediction model. Through extensive experiments, the BiLSTM model using three
hidden layerswas found to have the best accuracy and stabilitywhen predicting carbon prices.
This paper also uses “softsign” instead of “tanh” as the activation function of BiLSTM. In
addition, to prevent overfitting, this study incorporates the Dropout layer into the BiLSTM
model. Experimentally, the dropout rate is set to 0.1. Unlike previous empirical tuning, this
paper employs the CS algorithm to determine the ideal BiLSTM hyperparameters, such as
batch size, learning rate, and units. The optimization range of batch size is set from 2 to 512,
the learning rate from 0.001 to 0.0001, and units from 2 to 512. Referring to the relevant
literature and practical requirements, the population size of CS calculation is set to 30, the
probability of cuckoo eggs being found pa is taken as 0.25, and the number of iterations is
100 (Yang & Deb, 2014).

Furthermore, the setting of the observationwindow, i.e., how long in the past time informa-
tion is referenced for forecasting, is very important for time series forecasting. An observation
window that is too short is difficult to contain sufficient time-series information, while too
long may introduce early irrelevant information. Therefore, the observation windows are set
to 3, 4, 5, and 6 respectively to select the optimal observation window size and improve the
point prediction performance of carbon price. Then, this paper makes full use of the non-
linear learning ability and feature extraction ability of CS-BiLSTM to nonlinearly integrate
the prediction results of each reconstructed component. The final point prediction value of
carbon price is obtained.

Taking the three carbon trading pilots, Beijing, Shanghai and Tianjin, as examples, Fig. 8
shows the point forecast results and the forecast performance evaluation results at an observa-
tion window of 4. To further validate the effectiveness and robustness of the proposed hybrid
model, this paper also conducts an empirical study using data from four carbon pilot markets,
namely Shenzhen, Guangdong, Hubei and Chongqing. The empirical analysis process for
these four carbon trading pilots is the same as the one described above for Beijing, Shanghai
and Tianjin. Table 8 shows the point prediction results of the seven carbon trading pilots
under different observation windows. It can be found that the hybrid model proposed in this
paper has the optimal prediction performance and prediction stability when the observation
window is set to 4, i.e., the carbon price of the future day is predicted using the data of
the first 4 days. In summary, the hybrid model proposed in this paper maintains good point
prediction performance in the seven carbon trading pilot data sets, and is an effective tool for
point prediction of carbon price.

5.5 Point prediction comparison experiment

5.5.1 Comparison of hyperparametric optimization methods

In order to verify the superiority of the CS-BiLSTM model proposed in this paper, four dif-
ferent common hyperparameter optimization algorithms, including differential evolutionary
algorithm (DEA), genetic algorithm (GA) and particle swarm optimization algorithm (PSO),
and ant colony algorithm(ACO) are selected for comparison to optimize the hyperparame-
ters of BiLSTM and perform carbon price prediction. The same number of populations and
iterations are set for the four different optimization algorithms, and the optimization ranges
of the hyperparameters of the BiLSTM are all the same. All algorithms run on Intel Xeon
Gold 6139 CPU, NVIDIA Tesla V100 GPU, 86 GB RAM, Linux, and Python 3.8. Taking
the Beijing dataset as an example, the results of the optimized BiLSTM model for the four
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Fig. 8 Point prediction results for Beijing, Shanghai, and Tianjin

compared algorithms are shown in Table 9. DEA and PSO have fewer parameters and fast
convergence, but have the disadvantage of easily falling into local optimal points. Therefore,
DEA and PSO are difficult to find the optimal hyperparameters, and the prediction perfor-
mance of their optimized BiLSTM is lower than that of other optimization algorithms. GA
and ACO have a strong global optimization-seeking ability and can effectively find suitable
hyperparameters, but the convergence speed is slow and prone to stagnation. Therefore, the
training time for optimizing hyperparameters using GA andACO is longer, while the training
time of CS-LSTM is reduced by 28.22% and 30.80% compared with GA and ACO, respec-
tively. The CS algorithm has local search and global search capability and converges faster.
Meanwhile, CS is a global search using Lévy flight, which has infinite mean and variance,
which can effectively ensure that the CS algorithm can discover the global optimal hyperpa-
rameters more effectively. The experimental results prove that CS-BiLSTM outperforms the
other four compared algorithms in both the training time and prediction performance of the
optimized model.
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Table 8 Point prediction results under different observation windows

Dataset Observation window MAE RMSE MAPE (%)

Beijing 3 2.2222 2.5423 3.6561

4 1.4228 2.0256 2.2289

5 1.7795 2.2124 2.4325

6 2.0319 2.4451 3.4715

Tianjin 3 0.5411 0.9213 1.5431

4 0.2844 0.6974 1.0705

5 0.3596 0.7559 1.2556

6 0.4231 0.8322 1.3356

Shanghai 3 0.5741 0.8456 1.4555

4 0.5446 0.7865 1.3528

5 0.6212 0.9321 1.5787

6 0.5944 0.9035 1.5531

Shenzhen 3 2.1044 2.3121 5.7123

4 1.4873 1.6678 4.6977

5 1.4930 1.6824 4.7323

6 1.6511 1.8535 5.0431

Guangdong 3 2.2341 2.8892 5.4205

4 1.2804 1.7352 3.7756

5 1.3251 1.7894 3.8125

6 2.0451 2.4529 4.6521

Hubei 3 0.9811 1.4563 2.7352

4 0.8448 1.2489 2.6084

5 0.8851 1.2993 2.6234

6 1.0341 1.5672 2.8011

Chongqing 3 1.1170 1.4643 4.0875

4 0.9927 1.3201 3.8505

5 1.4427 1.7854 4.3764

6 1.8745 2.2316 5.4215

The bold symbol represents the observation window with the best prediction performance in different data
sets

5.5.2 Comparison of benchmark models

To further validate the superiority and stability of the hybrid framework proposed in this paper,
eight benchmark models were developed in this study. Four of the benchmark models were
derived from the hybrid framework constructed in this study, and the other four benchmark
models were derived from excellent research papers in the same research area. The specific
evaluation results of the compared models are shown in Tables 10 and 11.

As shown in Table 10, the prediction performance of the hybrid framework proposed in
this paper outperformed the other four benchmark models in all metrics. By comparing the
prediction performance of these four benchmark models, it can be found that the decomposi-
tion technique and the nonlinear integration algorithm can effectively improve the prediction
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Table 9 Comparison of hyperparametric optimization methods

Optimization
method

Population
number

Number of
iterations

Average
training
time per
BiLSTM
(minutes)

MAE RMSE MAPE

DEA-BiLSTM 15 50 3.97 10.13 10.94 13.84

GA-BiLSTM 15 50 4.57 8.02 9.14 11.67

PSO-BiLSTM 15 50 3.89 10.73 11.45 14.72

ACO-BiLSTM 15 50 4.74 8.42 9.65 12.46

CS-BiLSTM 15 50 3.28 7.24 8.53 10.42

stability and accuracy of the models on different data sets. Taking the Beijing dataset as an
example, the MAPE of the VMD-SAE-BiLSTM- RF model is reduced by about 55.34% and
10.99% compared with the BP model and the VMD-SAE-BiLSTM model, respectively. In
addition, theVMD-SAE-BiLSTM-BiLSTMmodel has 17.45%, 9.62%, and 8.52% reduction
in MAE, RMSE, and MAPE, respectively, compared to the VMD-SAE-BiLSTM-RF model,
which indicates the higher integration performance of BiLSTM for nonlinear integration.

As shown in Table 11, among these four benchmark models, although the random forest
model can effectively predict carbon prices in datasets such as Shanghai and Guangdong, the
stability of its prediction is not good. The prediction accuracy of the random forest model
in datasets such as Shenzhen and Hubei is poor, and there is still room for improvement.
Although EMD-PSO-LSSVR outperformed random forest on all datasets, its predictive sta-
bility was also poor. CEEDMAN-Sample entropy (SEn)-LSTM-RF has a more advanced
decomposition technique, LSTM prediction model, and nonlinear integrated model, which
makes its comprehensive performance better than EMD-PSO-LSSVR in different datasets.
In the EMD-VMD-PACF-GA-BP, the model introduces a double decomposition technique
and an intelligent optimization algorithm, which shows good stability on different datasets.
However, the hybrid model proposed in this paper outperforms the previous models on all
datasets. The above comparative experiments can prove that the hybrid framework proposed
in this paper is an effective tool for carbon price prediction, with good prediction accuracy
and stability.

5.6 Interval prediction

In the interval prediction stage, this paper uses a hybrid kernel function with a combination of
SE kernel function and RQ kernel function, and carbon price interval prediction is performed
using a GPR model based on the hybrid kernel function. Figure 9 shows the predicted results
and evaluation indicators of carbon price intervals for Beijing, Shanghai, and Tianjin at the
significance level of 0.05. The interval prediction performance of the seven carbon trading
pilot data at 0.05, 0.1, and 0.2 significance levels are shown in Table 12. At the significance
level of 0.05, the PIAW is 3.42, 2.2, and 2.12 for Beijing, Shanghai, and Tianjin, respectively,
and the PICP is 98.22%, 100%, and 100%, respectively. As can be seen from Fig. 9, almost
all of the true values of carbon prices fall in the prediction interval, and only a few fall outside
the prediction interval. As shown in Table 12, the Gaussian process regression based on the
hybrid kernel maintains good interval prediction performance on different data sets.
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Table 10 Four comparison models based on hybrid models

Dataset Model MAE RMSE MAPE (%)

Beijing BP 8.9726 10.6100 13.0877

VMD-SAE-BiLSTM 4.5648 5.5950 6.5664

VMD-SAE-BiLSTM-RF 3.9561 4.6891 5.8449

VMD-SAE-BiLSTM-BiLSTM 3.2357 4.2366 5.3472

Proposed model 1.4228 2.0256 2.2289

Tianjin BP 3.8565 5.0626 15.0265

VMD-SAE-BiLSTM 1.0242 1.7564 3.9483

VMD-SAE-BiLSTM-RF 0.8561 1.4246 3.2031

VMD-SAE-BiLSTM-BiLSTM 0.6781 1.1127 2.9459

Proposed model 0.2844 0.6974 1.0705

Shanghai BP 6.3129 6.6509 15.3784

VMD-SAE-BiLSTM 1.2451 1.9867 3.5642

VMD-SAE-BiLSTM-RF 1.0420 1.4563 2.9604

VMD-SAE-BiLSTM-BiLSTM 0.7899 1.1205 2.2412

Proposed model 0.5446 0.7865 1.3528

Shenzhen BP 11.3482 13.1831 37.9152

VMD-SAE-BiLSTM 7.4439 8.5933 13.4212

VMD-SAE-BiLSTM-RF 4.7639 5.4431 9.0192

VMD-SAE-BiLSTM-BiLSTM 3.5201 3.9987 7.5481

Proposed model 1.4873 1.6678 4.6977

Guangdong BP 6.6119 7.5429 17.9026

VMD-SAE-BiLSTM 3.7609 4.3011 10.4567

VMD-SAE-BiLSTM-RF 2.9005 3.8791 7.5671

VMD-SAE-BiLSTM-BiLSTM 2.1477 3.0801 6.1044

Proposed model 1.2804 1.7352 3.7756

Hubei BP 4.6684 5.5948 13.4900

VMD-SAE-BiLSTM 3.0711 3.9551 7.5541

VMD-SAE-BiLSTM-RF 2.3478 3.1125 5.2414

VMD-SAE-BiLSTM-BiLSTM 1.7831 2.5477 4.8199

Proposed model 0.8448 1.2489 2.6084

Chongqing BP 3.8807 4.7501 12.4191

VMD-SAE-BiLSTM 3.1235 3.9022 7.8910

VMD-SAE-BiLSTM-RF 2.0558 2.9052 6.5041

VMD-SAE-BiLSTM-BiLSTM 1.4599 2.4351 5.7871

Proposed model 0.9927 1.3201 3.8505
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Table 11 Four comparative models based on relevant literature

Dataset Model MAE RMSE MAPE (%)

Beijing Random forest (Yahşi et al., 2019) 5.7266 8.5909 9.2349

CEEDMAN-SEn-LSTM-RF (Wang et al., 2021) 1.6787 2.2081 2.5451

EMD-PSO-LSSVR (Zhu et al., 2017) 2.0342 2.6341 3.2315

EMD-VMD-PACF-GA-BP (Sun & Huang, 2020) 1.8948 2.4712 2.6591

Proposed model 1.4228 2.0256 2.2289

Tianjin Random forest 1.6077 2.5835 7.0618

CEEDMAN-SEn-LSTM-RF 0.6789 1.1552 1.5633

EMD-PSO-LSSVR 0.4233 0.8974 1.2457

EMD-VMD-PACF-GA-BP 0.5239 0.9865 1.3469

Proposed model 0.2844 0.6974 1.0705

Shanghai Random forest 8.8958 10.6867 4.9639

CEEDMAN-SEn-LSTM-RF 0.9103 1.1095 1.7707

EMD-PSO-LSSVR 1.5231 1.9976 2.5647

EMD-VMD-PACF-GA-BP 1.0119 1.2239 1.8702

Proposed model 0.5446 0.7865 1.3528

Shenzhen Random forest 8.8958 10.6867 54.2009

CEEDMAN-SEn-LSTM-RF 2.0951 2.9856 9.4266

EMD-PSO-LSSVR 5.7605 6.7731 27.5530

EMD-VMD-PACF-GA-BP 1.7892 2.2358 6.4759

Proposed model 1.4873 1.6678 4.6977

Guangdong Random forest 2.3733 3.5875 6.9866

CEEDMAN-SEn-LSTM-RF 1.6540 2.5672 5.0461

EMD-PSO-LSSVR 2.1246 3.3211 6.5954

EMD-VMD-PACF-GA-BP 1.312 2.3587 4.7853

Proposed model 1.2804 1.7352 3.7756

Hubei Random forest 3.4285 3.8541 10.4070

CEEDMAN-SEn-LSTM-RF 1.2245 1.9874 3.5641

EMD-PSO-LSSVR 2.0941 2.4639 5.4321

EMD-VMD-PACF-GA-BP 1.1208 1.9040 3.4567

Proposed model 0.8448 1.2489 2.6084

Chongqing Random forest 2.1455 2.9197 7.9991

CEEDMAN-SEn-LSTM-RF 1.2852 1.9872 4.6327

EMD-PSO-LSSVR 1.8977 2.2001 5.6601

EMD-VMD-PACF-GA-BP 1.1042 1.7692 4.3321

Proposed model 0.9927 1.3201 3.8505
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Fig. 9 Interval prediction results for Beijing, Shanghai, and Tianjin

In order to further verify the superiority and prediction stability of the hybrid kernel
function-based GPR, the effects of six different kernel functions on the interval prediction
performance are compared separately. The interval forecasts of carbon prices for the seven
carbon trading pilots were performed using SE, RQ, and Matern as single kernel functions
and three hybrid kernel functions, respectively. The predictive performance of GPR based
on different kernel functions at the 0.05 level of significance for the seven pilots is shown
in Table 13. From Table 13, it can be found that although the GPR based on a single ker-
nel function can effectively perform interval prediction, it is difficult to maintain excellent
prediction results on different data sets. Hybrid kernel functions can enhance the generaliza-
tion ability of GPR compared to single kernel functions, making it more effective in dealing
with nonlinear nonsmooth carbon price series. Furthermore, among these three hybrid kernel
functions, the hybrid kernel function based on SE and RQ used in this paper has stronger
prediction performance than the other kernel functions on different data sets and has stronger
robustness for carbon price interval prediction.
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Table 12 Interval forecast performance of seven carbon trading pilots

Dataset Evaluation metrics Significance level

0.05 0.1 0.2

Beijing PIAW 3.42 2.87 2.24

PICW 98.22% 92.58% 83.81%

Tianjin PIAW 2.12 1.78 1.39

PICW 100.00% 96.01% 91.33%

Shanghai PIAW 2.20 1.85 1.45

PICW 100.00% 90.59% 82.23%

Shenzhen PIAW 6.17 5.18 4.05

PICW 100.00% 98.05% 95.27%

Guangdong PIAW 4.54 3.82 2.99

PICW 98.91% 91.10% 80.47%

Hubei PIAW 2.73 2.30 1.80

PICW 99.44% 90.35% 81.48%

Chongqing PIAW 2.93 2.46 1.92

PICW 99.40% 89.58% 80.10%

Table 13 Prediction performance of interval prediction models with different kernel functions

Dataset Evaluation
Metrics

Single kernel functions Combined kernel functions

SE RQ Matern SE + RQ Matern +
RQ

Matern +
SE

Beijing PIAW 5.61 5.14 6.99 3.42 3.78 3.67

PICW 75.66% 78.79% 82.78% 98.22% 94.33% 83.29%

Tianjin PIAW 2.12 2.04 2.61 2.12 2.24 2.10

PICW 97.85% 96.55 98.46% 100.00% 100.00% 97.85%

Shanghai PIAW 2.21 2.37 2.57 2.20 2.22 2.48

PICW 85.97% 85.97% 88.35% 100.00% 89.97% 98.50%

Shenzhen PIAW 6.18 2.44 8.87 6.17 6.18 6.18

PICW 99.44% 45.83% 100.00% 100.00% 99.82% 100.00%

Guangdong PIAW 4.56 4.56 5.83 4.54 4.56 4.91

PICW 80.11% 80.10% 87.47% 98.91% 89.11% 98.63%

Hubei PIAW 2.75 8.95 3.28 2.73 3.13 2.92

PICW 65.84% 98.34% 73.82% 99.44% 96.96% 98.62%

Chongqing PIAW 2.934 5.30 3.59 2.93 3.12 3.04

PICW 71.04% 89.85% 79.10% 99.40% 96.72% 98.50%
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6 Conclusion

With the continuous in-depth exploration of China’s carbon emission trading pilot, valuable
experience has been accumulated for the construction ofChina’s carbonmarket.However, key
issues such as carbon market trading platform setup, rules for quota allocation and use, and
the development of carbon financial systems derived from the carbon trading market are still
controversial and need further research. For investors, an accurate carbon price forecast can
provide some guidance for their investment decisions. For policymakers, accurate prediction
of carbon price can enable them to better analyze the changing trends and problems of
the carbon trading market, make ex-ante policy impact assessments and formulate more
reasonable policies for this purpose.

In this paper, an intelligent optimized nonlinear integrated carbon price forecasting
framework based on multi-factor and two-stage dimension feature extraction is proposed,
containing VMD algorithm, stacked autoencoder, random forest, bidirectional long and short
termmemory artificial neural network, cuckoo search algorithm, andGaussian process regres-
sion. To verify the effectiveness of the proposed hybrid framework, four hyperparametric
optimization algorithms are tested, and eight benchmark models are developed to evaluate
the proposed hybrid framework systematically and comprehensively. The prediction results
show that the proposed framework outperforms all benchmarkmodels, and the following con-
clusions are drawn: (1) The introduction of potential influencing factors for forecasting on the
basis of historical carbon price data can improve the forecasting performance and robustness
of the model, and effectively enhance the forecasting of carbon price fluctuation trends. (2)
The two-stage feature dimension reduction method can extract the effective information in
the data and can well solve the problems of overfitting and error accumulation easily caused
by the introduction of exogenous variables. (3) The hyperparameter optimization method
based on the cuckoo search algorithm can effectively improve the prediction performance
of the model and make it more robust. (4) Interval forecasts provide more information on
the fluctuations of carbon prices than point forecasts. (5) The hybrid framework has good
practical significance and practical application value.

Although the hybrid forecasting framework proposed in this study has good carbon price
forecasting performance and forecasting accuracy, there are many directions that can be
improved. In the future, novel and effective individual forecasting models can be more rea-
sonably selected for forecasting. Unstructured data based on text and images may contain
factors that are difficult to quantify, such as investor sentiment, and their role in carbon price
volatility could be the subject of further research. Further, intelligent forecasting systems
and carbon financial trading decision systems can be developed for the carbon market, pro-
viding a novel forecasting tool for governments to specify sound policies and investors with
appropriate trading strategies to achieve returns on their investments.
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