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An effective air pollution prediction is of great significance to prevent and control air pollution and protect the
health of residents. In order to improve the prediction accuracy of PM2.5, an innovative PM2.5 concentration
prediction and early warning system based on optimal feature extraction and intelligent optimization is
developed in this study. First, a feedback variational modal decomposition algorithm is designed to decompose
the PM2.5 concentration sequence and fuzzy entropy is used to reconstruct the patterns of similar complexity.
Then, Copula entropy is used to select the influencing factors with a high impact on PM2.5. Next, the
reconstructed components and influencing factors are inputted to three individual prediction models,
including long short-term memory neural network, gated recurrent unit neural network, and temporal
convolutional network, for training andmulti-step short-term prediction. The results of the individual prediction
models are nonlinearly combined by Gaussian process regression which is optimized by themulti-objective grey
wolf optimization algorithm. Finally, the prediction results of different reconstructed components are nonlinearly
integrated to obtain the final PM2.5 prediction results. In an empirical study of two Chinese cities, the combined
prediction model proposed in this study outperformed the other six comparative models in terms of prediction
accuracy and stability. The experimental results prove that the hybrid prediction model proposed in this paper
can make an effective prediction and early warnings of air pollution.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Breathing fresh air is of great importance to the healthy life of
human beings. However, as the global economy develops and modern
industrialization accelerates, the problem of air pollution has aroused
widespread concern around the world. Severe air pollution has
attracted the attention of the Chinese government, and relevant
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researchers have begun to pay close attention to air pollution and its ef-
fects. Many epidemiological studies have shown that various respira-
tory diseases, circulatory systems, and other diseases are related to air
pollution [1]. Meanwhile, studies have shown that China's severe air
pollution reduces public happiness levels [2]. PM2.5, which consists of
highly reactive toxic and harmful substances, is the primary pollutant
of air pollution [3]. It is not only generated from natural soil dust but
also from energy combustion and human industrial production [4].

At China's current stage of economic development, air pollution is
unavoidable, but that does not mean it cannot be controlled. Since se-
vere air pollution directly impacts the environmental quality and
human health, accurate PM2.5 concentration prediction is one of the
primary goals of air quality research. Based on accurate PM2.5

concentration prediction results, the government can assess the
possibility of severe air pollution and provide scientific warnings.
According to the predictive air pollution levels, citizens can make
reasonable travel arrangements to protect their physical and mental
health. However, current PM2.5 concentration prediction systems are
still poor in accuracy and stability. More attention and research are
needed to develop a more accurate PM2.5 concentration prediction
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model and generate more accurate scientific warnings for potentially
severe air pollution events based on accurate prediction results. More
attention and research are needed to design a more accurate PM2.5

prediction model and generate more accurate scientific warnings for
potentially severe air pollution events based on the accuracy of the
prediction results.

The fluctuation of PM2.5 is influenced by a variety of factors, making
it complexly volatile and extremely sudden [5]. Accurate and stable
PM2.5 prediction can improve the system reliability of air pollution
prediction and early warning systems. Currently, researchers have
developed a variety of prediction techniques for PM2.5 concentrations,
which are summarized into four main categories: (1) physical models,
(2) statistical methods, (3) machine learning techniques, (4) hybrid
models.

Physical methods based on atmospheric physical and chemical pro-
cesses usemeteorological principles andmathematical methods to sim-
ulate air quality horizontally and vertically at large scales [6]. Common
physical models are the Community Multiscale Air Quality Modeling
System (CMAQ), Weather Research and ForecastingModel with Chem-
istry (WRF-Chem) [7], and the Nested Air Quality Prediction Modeling
System (NAQPMS) [8]. Ge et al. [9] developed an online source tracking
method combining the cloud process module in the nested air quality
prediction modeling system (NAQPMS) to effectively track acidic emis-
sion precursors when dealing with non-linear secondary stratospheric
pollutants. Physical models have good prediction accuracy, but they
are more suitable for long-term prediction and have limited practical
application in short-termprediction [10]. Physicalmodels also have cer-
tain limitations in practical application, such as reliance on the quality of
pollutant emission data, the complexity of calculations, and high uncer-
tainty of prediction results.

Classical statistical models predict air pollutants from the perspective
of time series analysis. Statisticalmodels commonly includeautoregressive
integratedmoving average (ARIMA) andmultiple linear regression (MLR).
Zhang et al. [11] applied an ARIMAmodel to predict PM2.5 concentrations,
and the analysis showed that PM2.5 concentrations were significantly and
positively correlated with PM10, SO2, and NO2 concentrations. Lesar and
Filipčić [12] simulated hourly PM2.5 concentrations on sea breeze days
using MLR, and the simulated hourly values were in good agreement
with the measured values. Although statistical models can effectively
make short-termpredictions of air pollutant concentrations, their inherent
linearity assumptions make them unable to solve non-linear problems.
When dealing with non-linear features, statistical models have difficulty
accurately capturing non-linear information, resulting in more significant
prediction errors and poorer stability of the models.

Machine learning techniques have been gradually applied to air pol-
lution studies to further increase the accuracy of air pollutant concen-
tration prediction. Machine learning techniques are characterized by
strong non-linear feature extraction, high generalization ability, and
high prediction accuracy. Asadollahfardi et al. [13] used multilayer
perceptron (MLP) neural networks, radial basis function (RBF) neural
networks, and Markov chain models to predict PM2.5 concentrations,
respectively. They demonstrated that artificial neural networks (ANN)
have better predictive performance. Rubal and Kumar [14] applied a
random forest technique to air pollutant concentration prediction and
obtained satisfactory results. Leong et al. [15] used a support vector
machine (SVM) for PM2.5 concentration simulation and proved that
SVM with radial basis function could effectively solve the air pollutant
concentration forecasting problem. Although a single machine learning
prediction model has been proved to be effective in predicting the con-
centration of air pollutants, more researchers construct hybrid models
to improve the prediction performance of the model under different
data conditions [16].

Related research shows that hybrid models are mainly classified into
two types: one is to mix different kinds of prediction models, and the
other is to mix data processing methods and optimization algorithms
withpredictionmodels. Researchers havewidely useddata preprocessing
2

methods based on decomposition and integration techniques in recent
years to construct hybrid prediction models [17]. The signal decomposi-
tion algorithm can decompose a non-linear non-smooth time series into
several smoother sub-series, from which more useful information can
be extracted. Predicting thedecomposed subsequences and then integrat-
ing the prediction results can reduce the computational complexity of the
prediction model and improve the prediction performance. Therefore,
data preprocessing is gradually becoming an increasingly critical tech-
nique to improve the prediction performance of hybrid models [18].
Several hybrid models based on decomposition integration tech-
niques have been proposed for air pollutant prediction studies.
Chen et al. [19] used an autoregressive integrated moving
average model (ARIMA), ANN, and SVM combined with wavelet
decomposition to predict PM2.5 concentrations. They demonstrated
that wavelet decomposition could capture fluctuations of PM2.5

concentrations more accurately, which can provide early warning
prediction of air pollution with effective information support. However,
the performance of wavelet decomposition is hugely dependent on the
subjectively selected wavelet basis functions and decomposition levels,
and there is a lack of a specific and compelling theoretical basis for
choosing wavelet basis functions and decomposition levels. Therefore,
as a data-driven adaptive decomposition technique, empirical mode de-
composition (EMD) is favoured by researchers. Zhu et al. [20] applied
EMD and support vector regression (SVR) to air quality index (AQI) pre-
diction and demonstrated that EMDhelps to improve the accuracy of pre-
diction models further. Although EMD can handle complex non-linear
signals adaptively, it also suffers from the lack of rigorous mathematical
theory, endpoint effects, andmodalmixing [21]. The variationalmode de-
composition (VMD) technique can effectively handle non-linear, non-
stationary complex signals while avoiding problems such as endpoint ef-
fects, spurious components, and boundary effects [22]. Wu and Lin [23]
combinedVMDand sample entropy (SE) and used long short-termmem-
ory (LSTM) neural networks for AQI prediction. Their results demon-
strated that VMD could effectively capture the intrinsic features of the
original AQI sequence and improve the prediction accuracy. Although
VMDhas the advantages of better decompositionperformance and strong
resistance to noise interference, the number of layers of signal decompo-
sition in VMD affects the decomposition performance. It depends on
human selection. As an essential module of the hybrid model, the selec-
tion and optimization of the signal decomposition algorithm still need
more research. In addition, although the signal decomposition algorithm
can decompose the PM2.5 concentration sequence into several smoother
subseries, there is often a similar complexity between subsequences,
which is often overlooked by researchers. Modeling all decomposed
subsequences would complicate the model computation and reduce the
computational efficiency of the prediction model [24].

Although hybrid models based on data preprocessing techniques
have proven to be practical tools for air pollution prediction, each pre-
diction model has its own disadvantages that are difficult to overcome
due to the different inherent properties of different prediction models
[25]. In addition, different data have different data distribution and
characteristics, and different prediction models have different predic-
tion performances on the same data set. To address these issues, re-
search on air pollutant concentration prediction requires further
exploration of combined predictive modeling techniques. Combined
forecastingmodels have received increasing attention from researchers
since Bates and Granger proposed the theoretical foundations of combi-
natorial forecasting [26]. The commonly used combination prediction
techniques are broadly classified into the traditional linear weighted
combinedmodel and themachine learning-based non-linear combined
model. Xiao et al. [27] used multiple single-prediction models to fore-
cast the electric load and then combined the single-prediction models
and used the cuckoo search algorithm (CS) to optimize the combined
models' weight coefficients. Liu et al. [28] developed a combined neural
network fuzzy forecasting model for wind speed prediction and opti-
mized the combined weights with an improved CS. It is demonstrated
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that the combined forecasting technique further improves the forecast-
ing accuracy while providing more trend variation for time series fore-
casting. In addition, Wang et al. [29] developed a robust combined
forecasting model combining ARIMA, SVM, extreme learning machine
(ELM), and least squares support vector machine (LSSVM). They used
Gaussian process regression to combine the predictions of each model
nonlinearly to achieve an effective short-term prediction of wind
speed. It is demonstrated that the proposed non-linear combined pre-
diction model outperforms individual models in terms of prediction
performance and stability. The combined prediction technique usually
obtains the optimal weights by minimizing the prediction error of the
training samples [30]. In addition, a single performance evaluationmet-
ric is challenging to represent the actual predictive performance of the
model entirely. It is more desirable to simultaneously provide different
performance evaluation metrics to obtain better prediction accuracy
when using optimization algorithms to optimize the combined model
weights. However, traditional single-objective optimization algorithms
such as particle swarm algorithm [31], simulated annealing algorithm
[32], and genetic algorithm cannot be applied to multi-objective prob-
lems [33]. Therefore, the development of combined prediction models
based onmulti-objective optimization algorithms needsmore attention
and research.

From the above review, it can be found that the previously proposed
air pollutant prediction methods are not perfect and have some un-
avoidable drawbacks. (1) Physical methods are suitable for long-term
prediction. It is difficult to make short-term predictions effectively and
has disadvantages such as reliance on data quality, high computational
complexity, and long operation time. (2) Statistical methods are based
on statistical assumptions and cannot effectively predict non-linear
time series. (3) Machine learning algorithms can effectively extract
and process complex sequences and extract non-linear features. Still,
they also suffer from the problems of being prone to local optima and
overfitting. (4) The importance and necessity of data preprocessing
need to be given more attention. The selection and optimization of sig-
nal decomposition algorithms affect the prediction performance and ac-
curacy. Meanwhile, the similarity complexity and similarity between
the sequences obtained by decomposition are often neglected. (5) Al-
though hybrid models based on decomposition and integration tech-
niques can make compelling predictions, the single model's prediction
accuracy and stability are still insufficient. (6) When optimizing a pre-
diction model, a single performance evaluation metric can hardly fully
represent the actual prediction performance of the model, and the
traditional single-objective optimization cannot be applied to multi-
objective problems.

Based on the above considerations, this paper develops a novel air
pollution prediction and early warning system containing the
Feedback-VMD algorithm (FVMD), Fuzzy Entropy (FuzzyEn), Copula
Entropy (CopulaEn), LSTM, Gated Recurrent Unit (GRU), Temporal
Convolutional Network (TCN), Gaussian Process Regression (GPR) and
Multi-Objective Grey Wolf Optimization algorithm (MOGWO). First,
an optimal feature extraction technique based on FVMD and FuzzyEn
is developed to extract the intrinsic features of PM2.5 concentration
data and reduce the complexity of model computation. Second, the
CopulaEn algorithm is employed in the selection of influencing factors
that strongly impact the fluctuation of PM2.5 concentration. Then,
LSTM, TCN, and GRU are used as three individual models for multi-step
short-term prediction. Next, the MOGWO-optimized GPR is used as a
non-linear combination of individual prediction models. Finally, all the
predictions obtained from the combined predictions are nonlinearly inte-
grated to get thefinal prediction results, and the future air pollution levels
are evaluated and warned. This paper selects actual PM2.5 concentration
data of two Chinese cities, Shanghai and Guangzhou for empirical
analysis. The empirical results prove that the combined prediction
model proposed in this paper has better prediction performance and
stability than other comparative models. The air pollution prediction
and early warning system are constructed based on accurate and
3

reliable early warning effects. The main innovations and contributions
of this study are as follows.

(a) A Feedback-VMD algorithm is developed to adaptively determine
the number of decomposition layers of PM2.5 concentration data
to extract the intrinsic information from PM2.5 data effectively. In
addition, this paper considers the complex relationship between
different decomposition patterns. It uses FuzzyEn to reorganize
the decomposition patterns into several new components to
reduce the computational complexity of the model.

(b) To further improve the predictive performance and robustness of
the model, several influencing factors that significantly impact
PM2.5 were selected as relevant variables introduced into the
PM2.5 prediction study using the CopulaEn algorithm.

(c) The LSTM, TCN, and GRU are used as three individual forecasting
models for multi-step short-term forecasting. The MOGWO-
optimized GPR model is used as a non-linear combination model
to absorb the advantages of different individual forecastingmodels
to obtain better combination forecasting results.

(d) After obtaining the combined prediction results of different
components, the final PM2.5 concentration prediction results are
obtained by non-linear integration. The future air pollution level
is evaluated and effectively warned.

(e) This paper develops an air pollution prediction and early warning
system based on the combined prediction models with optimal
feature extraction and intelligent optimization. Scientific evalua-
tion criteria are used, and simulation experiments are conducted
in two cities in China. The simulation results demonstrate that
the proposed hybrid framework has good prediction accuracy
and stability.

The rest of the paper is organized as follows. Section 2 describes the
main structure and theory of the proposed hybrid framework. Section 3
describes the combined forecasting model's data preprocessing and
evaluation metrics. Section 4 shows the prediction part, comparison,
and discussion of the combined prediction model. The last section con-
cludes the whole paper and presents the outlook for future research.

2. Structure of the proposed air pollution forecasting and warning
framework

This section introduces the main structure of the developed air pol-
lution forecasting and warning system, which can be divided into three
stages: optimal feature extraction and feature selection, multi-step
combination forecastingwithMOGWOoptimization, and non-linear in-
tegration of air pollution forecasting and warning. A brief flowchart of
the proposed framework is shown in Fig. 1.

2.1. Stage 1: optimal feature extraction and feature selection

The first stage can be divided into three modules: the feedback-
based VMD adaptive signal decomposition method, the FuzzyEn-based
reconstruction method, and the CopulaEn-based feature selection
method. The specific contents and implementation methods are as
follows:

2.1.1. Feedback variational mode decomposition
VMD is a signal decomposition algorithm based on Wiener filters,

Hilbert transforms, and mixed frequencies for variational problems
[34]. Traditional signal decomposition algorithms usually have strict
data requirements. For example, the Fourier transform is suitable for
processing smooth periodic signals [35], while wavelet analysis can ef-
fectively capture transient effects in non-stationary signals [36]. More,
EMD does not depend on the a priori information of the data and has
good adaptiveness to capture the effective features in non-linear signals.
However, the problems of modal mixing and endpoint effects of EMD
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limit its decomposition performance. In contrast, VMD can effectively
solve the issues of modal mixing and endpoint effects compared
with EMD, and it has good decomposition accuracy and better re-
sistance to noise interference when decomposing complex non-
linear data [37]. The details of the VMD algorithm are shown in
the Appendix.

Like many successful clustering and decomposition algorithms, the
VMD algorithm requires a predetermined number of decomposition
modes k. Related studies have proved that the number of decomposi-
tion modes affects the decomposition efficiency and noise interference
resistance of VMD [38]. If the number of decomposition modes k is too
tiny, information may be missing due to insufficient decomposition. If
the number of decomposition modes k is set too large, too many
modes may lead to phenomena such as time-frequency overlap and
capturing extra noise [39].
4

To address the above problems, this paper proposes a Feedback-
VMD algorithm (FVMD) that does not require a predetermined value
k. FVMD first performs a two-mode VMD of the input signal to obtain
two-mode signals. The similarity coefficients between eachmode signal
and the observed signal are obtained by calculating the decomposition
separately, and the optimal mode component of the mode signal with
the higher similarity coefficient is noted. Then, the optimal mode com-
ponent is fed back to the input of the VMD, and this mode component is
subtracted at the input of the VMD. Then the remaining signal is used as
a new signal for the two-mode VMD again. The above process is re-
peated until the maximum value of the similarity coefficient of the
two-mode components obtained from the nth decomposition is less
than the minimum value of the similarity coefficient of the two-mode
components obtained from the n-1th decomposition. The mixed signal
is considered to be completely decomposed.
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Let the mode components obtained from the nth decomposition be
xn, 1(t) and xn, 2(t). The similarity coefficients of xn, 1(t) and xn, 2(t) to
the observed signal x(t) are ζn, 1 and ζn, 2. Where the similarity
coefficient ζn, i(i = 1,2) is calculated as shown below.

ζn,i ¼ ∣∑Nt¼1
xn,i tð Þ ⋅ x tð Þ∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

t¼1
x2n,i tð Þ∑

N

t¼1
x2 tð Þ

s ð1Þ

Where N denotes the length of the observed signal x(t). Then the opti-
mal mode component is xn, best.

xn,best ¼ argmax
i

ζn,i
� � ð2Þ

The discriminant condition for the FVMD stop decomposition is:

max ζn,1, ζn,2
� �

<min ζn−1,1, ζn−1,2
� � ð3Þ

The FVMD algorithm proposed in this paper does not require a pre-
set number of decompositions k. The observed signal is finally
decomposed into n + 1 subsequences, removing noise by adaptively n
iterating times. This subseries does not overlapwith each other and con-
tain trend information of PM2.5 concentration changes, and they will
revert to the original series after adding the rejected noise. However,
the noisy series are usually removed in previous time series prediction
studies. PM2.5 concentration series have complex characteristics such
as non-linearity and non-smoothness, and complex factors influence
the concentration changes. At the same time, the noise contains various
other random factors that are difficult to measure and affect the fluctu-
ation of PM2.5 concentration. Some stochastic factors may include
complex extreme weather and natural environmental changes
(e.g., sudden wind and rainstorms and natural fires) and human activi-
ties (e.g., construction dust and traffic trips). Therefore, the excluded
noise may contain information on short-term variations and extreme
changes that affect PM2.5 fluctuations. This paper obtains the residual
signal xresidual by subtracting all FVMD decompositions from the ob-
served signal to obtain the mode component.

xresidual ¼ x tð Þ−∑n−1
n¼1 xn,best−xn,1 tð Þ−xn,2 tð Þ ð4Þ

The pseudocode for FVMD is shown below.

Algorithm 1. Feedback VMD.
5

2.1.2. Fuzzy entropy
Fuzzy entropy (FuzzyEn) can quantify and categorize the degree of

uncertainty in random variables. It can be used to evaluate the compli-
cation of time series [40]. FuzzyEn, as an improved technique to
SampleEn and Approximate entropy (ApproEn), introduces the concept
of fuzzy set, retains the advantages of SampleEn andApproEn, and elim-
inates the disadvantage of erroneous entropy analysis in the presence of
minor variations and baseline drift.

As a technique for quantifying the time series' complexity, a higher
entropy value of FuzzyEn indicates a higher probability of generating
newpatterns, i.e., higher complexity of time series. However, the similar
complexity and correlation between different subsequences are often
ignored. In this study, FuzzyEn is used to measure the complexity of
the decomposed subsequences, and subsequences with similar com-
plexity are reconstructed into a new component. The optimal feature
extraction technique combining FVMD and FuzzyEn proposed in this
paper effectively reduces the complexity of the subsequences and en-
hances the model's computational efficiency and prediction perfor-
mance.

2.1.3. Copula entropy
Ma and Sun proposed a new concept of entropy, called Copula en-

tropy (CopulaEn), which can be used to measure the full-order correla-
tion between random variables [41]. The concept of correlation is a
fundamental statistical idea that measures the intrinsic statistical link
between random variables. The Pearson correlation coefficient, a classi-
cal correlation measure, is widely used to measure the degree of corre-
lation between two variables [42]. However, it is only applicable to the
linear case and implicitly has the defect of the assumption of Gaussian
distribution, whichmakes it challenging to apply in practical situations.

CopulaEn, as a more advanced correlation measure, has the advan-
tages of nomodel assumptions, the ability to handle non-linear relation-
ships andmonotonic transformation invariance, and applies to any type
of correlationmeasure [43]. In this paper, several pollutant factors asso-
ciated with PM2.5 concentration changes were introduced into the
prediction study, and CopulaEn was used to measure the correlation
between each influencing factor and PM2.5 concentration. The
influencing factor with a higher correlation was selected for PM2.5

concentration prediction.

2.2. Stage 2:multi-step combination prediction withMOGWO optimization

The second stage can be divided into individual prediction models
and combined models with multi-objective optimization. In this
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paper, three artificial neural networks, LSTM, GRU, and TCN, which
have made a splash in time-series prediction, are used as individual
prediction models and applied to the study of multi-step prediction
PM2.5. This paper uses GPR as the combined model and optimizes
its hyperparameters with the MOGWO algorithm to nonlinearly
combine the individual prediction models to improve accuracy and
stability. The topology of each neural network and the flow of the
MOGWO algorithm are shown in Fig. 2.

2.2.1. Long short-term memory
Hochreiter and Schmidhuber proposed LSTM in 1997, which is

considered an excellent variant of RNN [44]. LSTM introduces cell
states as storage units to store historical information and adds
three gates: input gate, forgetting gate, and output gate to filter.
This gives the LSTM a long-time memory capability, allowing it to
handle non-linear time series efficiently and solving some of the
shortcomings of RNN, such as gradient reduction or gradient explo-
sion [45].

2.2.2. Gated recurrent unit neural network
Similar to LSTM, the structure of GRU combines input gates, forgetting

gates, cells, and hidden states. Therefore, GRU can be a simpler gating
mechanism than LSTM, requiring fewer parameters and converging
more easily [46]. In addition, GRU is better at remembering recent knowl-
edge rather than information from the distant past so that more recent
data points are automatically more predictive than older ones [47]. GRU
and LSTM, as excellent variants of RNN, are indistinguishable in their per-
formanceondifferent tasks. As individual predictionmodels, the structural
differences between LSTM and GRU can help them learn more valid and
extra information from the PM2.5 concentration subseries, improving the
accuracy and stability of the combined prediction framework.
Fig. 2. Structure of individual mo

6

2.2.3. Temporal convolutional network
In neural network-based timing studies, LSTMandGRU based on clas-

sical RNN structures, for example, are usually used, while convolutional
network structures are often applied to image processing. Related studies
have demonstrated that convolutional networks can perform better than
RNN structures for tasks such as machine translation and audio process-
ing [48]. One of the convolutional networks for time series problems,
the temporal convolutional network (TCN), has been proposed.

TCN uses causal convolution to ensure that future information is not
compromised. In addition, to learn long time series dependencies, TCN
introduces extended convolution to reduce the depth of simple causal
convolution. TCN can change the perceptual field by increasing the
number of layers and changing the expansion coefficient, which pro-
vides more flexibility in the length of historical information and avoids
the problems of gradient dispersion and gradient explosion in RNN.
Therefore, compared with LSTM and GRU, adding TCN as an individual
prediction model can learn more information from the data and im-
prove the prediction model's accuracy and robustness.

2.2.4. Gaussian process regression
Gaussian process regression (GPR) is a machine learning method

based on Bayesian and statistical theories. GPR has good adaptability
and generalization performance in dealing with complex classification
and regression problems such as small samples and non-linearities
[49]. Therefore, this paper uses the GPR model to combine LSTM, GRU,
and TCN to obtain more accurate prediction results. With the continu-
ous development and improvement of GPRmodel research, researchers
have found that suitable hyperparameters can reduce the number of
GPR iterations and improve prediction accuracy. The covariance
function in GPR, also known as the kernel function, is the main source
of hyperparameters for GPR models. The common kernel functions
mean exponential (SE) covariance function, quadratic rational (RQ)
dels and MOGWO algorithm.
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covariance function, and Matern covariance function are calculated as
shown below.

kSE xi, xj
� � ¼ exp −

d xi, xj
� �2
2l2

 !
ð5Þ

kRQ ¼ 1þ d xi, xj
� �2
2αl2

 !−α

ð6Þ

kMatern xi, xj
� � ¼ 1

Γ vð Þ2v−1

ffiffiffiffiffiffi
2v

p

l
d xi, xj
� � !v

Kv

ffiffiffiffiffiffi
2v

p

l
d xi, xj
� � !

ð7Þ

Where d(⋅, ⋅) denotes the Euclidean distance, Kv(⋅) is the modified Bessel
function, and Γ(⋅) is the gamma function. Where α is the scale mixture
parameter, which is the shape parameter of the kernel function. And l is
the length scale of the kernel, which is the correlation determination
hyperparameter, and the larger its value, the smaller the correlation
between input and output. Compared with a single kernel function, the
performance of the combined kernel function is better [50]. The
combined kernel functions in this paper are shown below.

kcombined xi, xj
� � ¼ kSE þ kRQ ð8Þ

2.2.5. Multi-Objective Grey Wolf Optimizer
Multi-Objective GreyWolf Optimizer (MOGWO) is amulti-objective

optimization algorithm based on GWO, proposed by Mirjalili et al. [51].
It is a heuristic algorithm that simulates the social hierarchy and hunt-
ing of grey wolves. GWO regards each individual in the population
as a solution and treats the current optimal, superior, and suboptimal
solutions as corresponding to the leading wolves: α, β, δ and the
rest of the individuals defined ω, all of which are the lowest-level
individuals and obey the leadership of other high-ranking grey wolves.
GWO simulates the collective hunting behaviour of grey wolves,
including leading, encircling prey, updating position, and hunting.
GWO has the advantages of fewer parameters, easy convergence,
and not easily falling into local optimality. To make GWO applicable
tomulti-objective optimization, the following two techniques are incor-
porated

(1) Pareto archive

Each iteration of GWO generates an optimal individual, and the
Pareto archive is used to store these non-dominated Pareto optimal so-
lutions. The Pareto archivemay containmore andmore individuals dur-
ing continuous updating, so the Pareto archive usually sets an upper
limit. In order tomaintain the diversity of individuals, when the individ-
uals in the Pareto archive exceed the upper limit, similar individuals are
eliminated according to the magnitude of the crowding to reduce the
number of individuals.

(2) Selection of lead wolves

In the original GWO, the three lead wolves can be selected based on
the fitness value of the objective function. In contrast, inmulti-objective
optimization, the merits of individuals are determined by the Pareto
dominance relationship instead of differentiating by simple function
values. Therefore, the leader wolf selection mechanism is redefined
using a roulette wheel to select individuals from the Pareto archive as
leader wolves, while the crowding distance of individuals is associated
with their probability of being selected.

2.2.6. MOGWO optimized GPR
Choosing appropriate hyperparameters for the GPR kernel function

can improve the model's prediction accuracy and generalization
performance. The existing literature on GPR usually uses classical
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single-objective optimization algorithms such as the conjugate gradi-
ent method or PSO for optimization. Single-objective optimization al-
gorithms such as PSO have better global search capability and can
find the optimal global solution with high probability. However, the
evaluation of a single fitness function can hardly reflect the model's
actual performance. There may be room to improve the model's pre-
diction performance in another fitness function when the current fit-
ness function makes the model reach the optimal performance.
Therefore. In this paper, the MOGWO algorithm is introduced into
the optimization problem of GPR hyperparameters. As shown in
Eqs. (5) and (6), this paper uses MOGWO to search and optimize
the three hyperparameters of lSE, αRQ and lRQ, and in the combined
kernel function. The search interval of all three hyperparameters is
[0,10].

In this paper, two sets of fitness functions f1 and f2 of MOGWO
are constructed with reference to two model performance evaluation
metrics, the average absolute percentage error (MAPE) and theNash ef-
ficiency coefficient (NSE), which are calculated as shown below.

f1 ¼ 1
N
∑N

i¼1∣byi−yi
yi ∣

f2 ¼ 1−
∑N

i¼1 yi−byi� �2
∑N

i¼1 yi−yið Þ2

8>>>>><>>>>>:
ð9Þ

Where yi denotes the training set observations and byi denotes the
training set fit. In addition, the population size ofMOGWO is 25, the size
of the Pareto archive is 20, and the number of iterations of the algorithm
is set to 100.

2.3. Stage 3: non-linear integration and air pollution warning

The first and second phases of the air pollution forecasting and
warning systemare performedwith adaptive optimal feature extraction
and combined prediction for PM2.5 concentration data, respectively.
Related studies show that LSTM has powerful non-linear data process-
ing capability and good stability. Therefore, in the third stage, LSTM is
chosen as a non-linear integration model to integrate the prediction re-
sults of the reconstructed components nonlinearly.

With economic development and industrialization, theUnited States
proposed a fine particulate matter standard in 1997 to monitor the in-
creasing concentration of fine particulate matter (PM2.5). Since then,
the PM2.5 concentration index has become an extremely important
index to measure the degree of air pollution. To protect human health
and further control air pollution, China issued the Ambient Air Quality
Standard in 2012 and adopted it as a national environmental quality
standard, implemented throughout China in 2016. The standard sepa-
rates the ambient air functional zones into two types: the first category
is for areas requiring special protection, and the second is for residential
and industrial areas. It also sets out quality requirements for the
ambient air functional areas, and the PM2.5 concentration limit value
standards are shown in Table 1.

After obtaining accurate PM2.5 concentration prediction values, this
paper assesses and warns the air pollution level based on the Ambient
Air Quality Standards and provides reference opinions for preventing
and controlling air pollution.

3. Case analysis

3.1. Data source

China, the world's largest developing country, suffers unprece-
dented air pollution as it accelerates its economic development. In this
study, the daily average PM2.5 concentration data of Shanghai and
Guangzhou were selected as the study samples, and the data were
obtained from the China Meteorological Data Network (http://data.

http://data.cma.cn/


Table 1
Air pollutant concentration limit.

Air pollutants Average time Concentration limit Unit

Level I level II

PM2.5 Annually average 15 35 μg/m3

24-hour average 35 75
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cma.cn/). These two cities are economically advanced and have a large
population, so timely and accurate air pollution forecasts and warnings
can effectively protect the health of city residents. The sampling range of
the daily average PM2.5 concentration data for both Guangzhou and
Shanghai are from June 1, 2018, to June 30, 2020. In addition, five other
air pollutants, namely PM10, SO2, CO, NO2, and O3, were sampled in this
study as potential effects of fluctuations in PM2.5 concentrations for
prediction studies. The dataset is divided into training, validation, and
test sets, which account for 60%, 20%, and 20%, respectively. Fig. 3 shows
Fig. 3. Data description for the Gua
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the geographical location and PM2.5 concentration fluctuations of the
two cities. Moreover, the statistical information of the sample data
is also displayed in Fig. 3, including total, mean, sample difference,
maximum, quantile, and minimum values. In order to better
observe the correlation between the trend of PM2.5 concentration
and the trend of potential influencing factors, the line graphs are
plotted in Fig. 4.

In neural networks, dimensionless can convert data of differ-
ent magnitudes into data uniform scales. The dimensionless nor-
malization can improve the speed of model convergence to a
certain extent and avoiding the impact of singular values on
model calculations. In this study, the typical normalization
method is used to preprocess the data, and the calculation for-
mula is as follows:

x0 ¼ x−min xð Þ
max xð Þ−min xð Þ ð10Þ
ngzhou and Shanghai samples.

http://data.cma.cn/


Fig. 4. PM2.5 and related factors in Shanghai and Guangzhou.

Table 2
The result of ADF test in PM2.5 concentration time series.

Cases t-statistic P-value

Shanghai −4.352 0.0003
Guangzhou −3.515 0.1119
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Where x represents the original data, x' is the normalized result, and the
maximum and minimum values of the original data are represented by
max(x) and min(x), respectively.

3.2. Non-linearity and non-smoothness tests for time series

Before beginning the time series analysis, the non-linearity and
non-stationarity of the PM2.5 concentration must be confirmed.
This paper used the two most commonly used tests, Augmented
Dickey-Fuller (ADF) and Brock-Dechert-Scheinkman (BDS). The re-
sults of the ADF test are shown in Table 2, and the p-values for
both city data sets are less than 0.05. Also, the original hypothesis
is strictly rejected at the 1% level, so both cities' PM2.5 series are
non-stationary.
9

The embedding dimension of the BDS test is set to 5 in this paper.
Table 3 displays the results of the BDS test. The test findings reveal
that all z statistics are significantly higher than the critical values within
the 95% confidence interval, and the p-values are less than 0.05. The test
proves that the time series of PM2.5 concentration has non-linear char-
acteristics. Considering the non-linear and non-smooth characteristics
of PM2.5 concentration, LSTM, GRU, and TCN, which can effectively



Table 3
The results of BDS test in PM2.5 concentration time series.

Cases Statistic Z-statistic P-value 95%CI

Shanghai BDS (2) 16.064 0.000 [−1.96,1.96]
BDS (3) 15.994 0.000 [−1.96,1.96]
BDS (4) 15.394 0.000 [−1.96,1.96]
BDS (5) 15.367 0.000 [−1.96,1.96]

Guangzhou BDS (2) 28.777 0.000 [−1.96,1.96]
BDS (3) 28.764 0.000 [−1.96,1.96]
BDS (4) 29.026 0.000 [−1.96,1.96]
BDS (5) 29.341 0.000 [−1.96,1.96]
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handle the non-linear characteristics, are selected as the three individ-
ual prediction models in this paper.

3.3. Optimal feature extraction

This study proposes a feedback VMD method to decompose PM2.5

concentrations. As described in Section 2, the FVMD algorithm does
not require a predetermined number of mode decompositions and can
perform decomposition adaptively. As shown in Fig. 5-A and 6-A,
FVMD decomposes the PM2.5 concentration time series of Shanghai
and Guangzhou into 6 and 5 modes, respectively, and obtains a
Fig. 5. The feature extraction pro
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residual series. Table 4 presents the statistical information of the
original PM2.5 series, the decomposed individual modes, and the
residual series with mean and variance for the two cities.

To verify the effectiveness of the proposed FVMD method in adap-
tive decomposition, the number of mode decompositions is set from 2
to 10 in this paper, and the VMD decomposition is performed on the
PM2.5 concentration series of two cities. As shown in Fig. 5-B and 6-B,
the histograms of themean values of the similarity coefficients between
the decomposed patterns and the original series obtained from the de-
composition under different pattern decompositions are demonstrated.
In addition, Fig. 5-C and 6-C show the decreasing trend of the mean
value of the similarity coefficient when the number of pattern decom-
positions increases. Taking the Shanghai dataset as an example, as
shown in Fig. 5-B, the mean value of the similarity coefficient decreases
continuously when the number of VMD pattern decompositions in-
creases. As shown in Fig. 5-C, when the number of decompositions is
small (k = 2), the decreasing speed of the mean value of the similarity
coefficient decreases from fast to slow as the number of decompositions
increases. And the rate of decrease in the mean value of the similarity
coefficient increases abruptly when k ≥ 7, followed by a smoothness
again. This indicates that when the number of decompositions exceeds
7, further increasing decompositions make the decomposition less effi-
cient. It is difficult to extract more effective information and may
cess of the Shanghai dataset.



Table 4
The mean and variance of each mode and residual.

Cases Statistic Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Residual

Shanghai Mean 33.08 0.0008 0.002 0.0001 0.0002 0.0004 0.003
Variance 102.80 42.27 7.83 32.19 4.55 31.99 76.45

Guangzhou Mean 27.29 0.0005 0.0009 0.00008 0.00003 / 0.002
Variance 81.13 20.43 2.17 6.21 9.23 / 25.67
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capture additional noise. Therefore, the number of decompositions
should be 5 or 6 when using VMD to decompose the Shanghai PM2.5

series. In contrast, the FVMD algorithm proposed in this paper adap-
tively decomposes the Shanghai PM2.5 series into six subsequences,
consistent with the theoretical analysis. The feedback-type mechanism
of FVMD makes the decomposed subsequences obtain higher mean
values of similarity coefficients. Therefore, FVMD has a better decompo-
sition performance than VMD.

According to FuzzyEn, reconstructing sequences with similar com-
plexity can effectively reduce the computational complexity of the pre-
diction model and improve the prediction performance. As shown in
Fig. 5-D and Fig. 6-D, mode1, mode3, mode5 and mode2, mode4, and
mode6 of the Shanghai dataset can be reconstructed as Component1,
Component2, and Component3, respectively, according to the FuzzyEn
Fig. 6. The feature extraction proc
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values of different modes. Mode1, mode3 and mode2, mode4, and
mode5 of the Guangdong dataset can be reconstructed as Component1,
Component2, and Component3, respectively. Fig. 5-E and 6-E show the
reconstruction results with residual sequences for the two cities.

3.4. Influencing factors selection

In this section, five other air pollutant data were selected as potential
influencing factors for PM2.5. The CopulaEn algorithm analyzed the
degree of correlation between different features and fluctuations in
PM2.5 concentrations. Table 5 shows the values of CopulaEn for different
influencing factors and PM2.5 concentrations, and the magnitude of
CopulaEn values represents the degree of correlation. In order to reduce
the complexity of the model calculation, the top three influencing factors
ess of the Guangzhou dataset.



Table 5
CopulaEn value of influencing factors.

Cases PM10 SO2 CO NO2 O3

Shanghai 0.4198 0.1754 0.5592 0.3255 0.0379
Guangzhou 1.1164 0.2439 0.2354 0.3304 −0.0408
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in terms of CopulaEn values are selected as the input features of themodel
in this paper.

3.5. Evaluation indicators

In this paper, five evaluation indicators are used to assess the
models' predictive performance, and these evaluations have been
widely used in time series forecasting studies [52,53]. These fivemetrics
are mean absolute error (MAE), root mean square error (RMSE), mean
absolute error (MAPE), median absolute percentage error (MdAPE),
and Nash Sutcliffe Efficiency (NSE). The NSE is generally used to verify
the performance of model results such as hydrometeorology. If the
NSE is closer to 1, it indicates that the model quality and credibility
are better; if the NSE is close to 0, it indicates that the overall results
of the model are credible, but the prediction error is large; if the NSE
ismuch less than 0, it indicates that themodel is not credible. Moreover,
if the other four evaluation indexes are smaller, the better the model
performance is indicated. The formulae for the five evaluation metrics
are shown in Table 6, where by represents the observed value, byi repre-
sents the predicted value, and N represents the sequence length.

4. Results and discussions

4.1. Individual prediction models

4.1.1. Time step
Time step length, also known as time lag, plays an important role in

LSTM, RNN, and TCN. The time step length defines how many time-
stamped data points should be incorporated as temporal neural net-
work input data. Determining a reasonable time step can effectively im-
prove the model's computational efficiency and prediction accuracy.
Through extensive experiments and tests on three models, LSTM,
GRU, and TCN, it is found that excellent prediction performance can be
achieved when the time step is set to 4. Finally, the time step of all indi-
vidual prediction models is set to 4.

4.1.2. Multi-step short-term forecasting
In this paper, three temporal neural networks, LSTM, GRU, and TCN,

are used as individual prediction models to make short-term predic-
tions of PM2.5 concentrations for one, two, and three days in the future.

In terms of neural network construction, after continuous testing
and experiments, it is found that the three-layer stacked temporal neu-
ral network has the optimal prediction performance. In addition, the
number of neurons has a direct impact on the fitting ability of the neural
network. The size of the batch size has a close relationship with the
Table 6
Evaluation metrics.

Metrics Definition Equation

MAE Mean absolute error MAE ¼ 1
N∑

N
i¼1 ∣yi−byi ∣

RMSE Root mean square error
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ⋅∑

N
i¼1 byi−yi
� �2q

MAPE Mean absolute percentage error MAPE ¼ 1
N∑

N
i¼1 ∣byi−yi

yi ∣� 100%

MdAPE Median of absolute percentage error
MdAPE ¼ median ∣ yi−byiyi ∣� 100%

� �
NSE Nash Sutcliffe Efficiency

NSE ¼ 1−
∑N

i¼1 yi−byi� �2
∑N

i¼1 yi−yið Þ2
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weight update of the neural network, and a suitable batch size can sig-
nificantly improve the convergence speed and prediction performance
of the neural. In this paper, we adjust the hyperparameters of different
models and continuously optimize themodels to get the individual pre-
diction model that fits the training set best. Tables 6 and 8 show the 1-
step prediction performance of the three different individual models for
four subsets of series in two cities. Taking the 1-step forecasting of
Shanghai data as an example, three different forecastingmodels behave
differently in different data. In predicting Component 1, the best accu-
racy is GRU, and the difference in prediction performance among the
threemodels is small. Although the LSTMdoes not achieve the best pre-
diction accuracy, it maintains good accuracy in different data and has
the best prediction stability. Therefore, it is difficult for a single predic-
tion model to achieve optimal performance. The combination of multi-
ple prediction models may further improve the prediction accuracy
and stability of the model.

4.2. Combined model prediction

To improve the predictive performance and robustness of themodel,
this paper utilizes the GPRmodel as a combinatorialmodel to perform a
non-linear combination of the prediction results of the individual
models. Three trained individual models are used to fit the training
set, and the fitted values of the training set are used as the input values
of the GPR model, and the actual values in the training set are used as
the output values. The selection of hyperparameters of the GPR model
greatly affects the prediction performance of theGPRmodel, and the co-
variance kernel function is the main source of hyperparameters of the
GPR model. Therefore, this paper uses the MOGWO algorithm to per-
formmulti-objective optimization of the hyperparameters of the kernel
function of the GPR model to make the GPR have better combined pre-
dictive performance and stability. After training, GPR can obtain the
final prediction results by adaptively and nonlinearly combining the
prediction data according to the characteristics of the prediction data
of different individual models. Tables 7 and 8 show the 1-step prediction
performance of the three individualmodels and the combined1-step pre-
diction performance of the MOGWO-GPR model. The MOGWO-GPR
model combines the prediction results of the three models nonlinearly,
which has a significant improvement in different data and different eval-
uation indexes and effectively improves the prediction performance and
stability.

4.3. Non-linear integration model

After forecasting each reconstituted subsequence using the com-
bined forecasting model, all the forecasts for the same city are pooled
for the final integration. The LSTM, with its powerful non-linear fore-
casting capability and good forecasting stability, is used as the integra-
tion model for the non-linear integration of the forecasts. The final
multi-step forecasting results and performance for two cities are
shown in Figs. 7 and 8 and Tables 9 and 10. The experimental results
show that the hybrid combination prediction model has good predic-
tion stability and accuracy in different situations and can effectively pre-
dict the concentration of PM2.5.

4.4. Nonlinear integration and air quality warning

After forecasting each reconstructed component using the combined
forecasting model, the final non-linear integration of all forecasts was
performed. The final results of the two cities' multi-step predictions
are shown in Figs. 7 and 8, and the prediction performance is shown
in Tables 7 and 8.

The performance of the proposed combined prediction hybrid
framework performs well in predicting the trend of future PM2.5

concentrations and is suitable for 1-step ahead prediction. In multi-
step prediction, less historical information, which brings problems



Table 7
Single-step prediction results of individual and combined models for the Shanghai dataset.

Sequences Models MAE RMSE MAPE MdAPE NSE

Component 1 LSTM 0.005097 0.005829 1.607268 0.014464 0.995456
TCN 0.005395 0.006308 1.765825 0.015676 0.994679
GRU 0.005711 0.005711 1.535625 0.014207 0.995638
MOGWO-GPR 0.003249 0.003965 1.063083 0.009329 0.997898

Component 2 LSTM 0.007131 0.008309 1.626767 0.015599 0.992176
TCN 0.005653 0.006669 1.295639 0.011569 0.994959
GRU 0.008488 0.009449 1.969020 0.019626 0.989880
MOGWO-GPR 0.004116 0.004969 0.947572 0.008443 0.997202

Component 3 LSTM 0.015773 0.017949 3.231277 0.030169 0.973574
TCN 0.022099 0.025527 4.282016 0.038876 0.946557
GRU 0.015678 0.018312 3.102545 0.030751 0.972498
MOGWO-GPR 0.010299 0.012356 2.026295 0.017198 0.987478

Residual LSTM 0.035957 0.040914 11.911109 0.074682 0.916611
TCN 0.046738 0.054366 14.176702 0.099924 0.852759
GRU4 0.037840 0.044893 9.898643 0.087130 0.899601
MOGWO-GPR 0.020935 0.025434 5.707214 0.040975 0.967773
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such as error accumulation and increased uncertainty, may reduce pre-
diction accuracy. However, the combined prediction method proposed
in this paper absorbs the advantages of the three individual models, re-
duces redundant information, and makes better prediction of PM2.5

trends even in multi-step prediction, resulting in a significant improve-
ment in prediction accuracy and stability in different data sets.

In this paper, based on accurate short-term forecasts of PM2.5

concentrations, air quality is assessed and warned based on the
Ambient Air Quality Standards implemented in China. Referring to the
limitation standards in Table 1, Shanghai met the Class 1 standard on
92 days, the Class 2 standard on 53 days, and the air pollutants were
below the Class 2 environmental functional area standard on three
days out of the 148 days of the test data from February 4, 2020, to
June 30, 2020. On the other hand, Guangzhou City met the Class 1 stan-
dard on 134 of these 148 days and the Class 2 standard on 14 days. This
indicates that Shanghai's air quality needs to be improved, while
Guangzhou's air quality is better. As shown in Tables 9 and 10, the hybrid
model warns the air quality of Shanghai for the next one, two, and three
days, and the early warning accuracy reaches 99%, 91%, and 89%, respec-
tively. Furthermore, the short-term warning for Guangzhou air quality
achieves 95%, 95%, and 90% accuracy, respectively. Therefore, the air pol-
lutant forecasting and warning framework provide effective short-term
predictions of pollutant concentrations and air quality warnings.

4.5. Comparison

To verify the effectiveness and stability of the hybrid prediction frame-
work proposed in this paper, six comparative models are developed in
Table 8
Single-step prediction results of individual and combined models for the Guangzhou dataset.

Sequences Models MAE RM

Component 1 LSTM 0.002841 0.0
TCN 0.002623 0.0
GRU 0.002999 0.0
MOGWO-GPR 0.002676 0.0

Component 2 LSTM 0.006274 0.0
TC 0.007156 0.0
GRU 0.008385 0.0
MOGWO-GPR 0.004301 0.0

Component 3 LSTM 0.018258 0.0
TCN 0.007128 0.0
GRU 0.004908 0.0
MOGWO-GPR 0.004458 0.0

Residual LSTM 0.043541 0.0
TCN 0.031309 0.0
GRU 0.036089 0.0
MOGWO-GPR 0.019458 0.0
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this paper, with references to outstanding papers in related research
fields. These models are the advanced research results in recent years
and are typical. The comparison results for the data of the two cities are
shown in Tables 9 and 10 and Figs. 7 and 8.

Comparedwith all the comparisonmodels, the combined prediction
hybrid framework proposed in this study has a significant advantage in
the accuracy of air pollutant prediction and warning, and the compari-
son results are displayed in Tables 7 and 8. Using individual models
such as Random Forest (RF) [54], LSTM [55], etc., although they can ef-
fectively predict PM2.5 concentrations, the prediction accuracy and
warning accuracy are inferior to other combined models. Moreover,
the performance of individual models varies widely and is not stable
in different city datasets. In contrast, PSO-SVR [56] used an optimization
algorithm to optimize the SVR, which enabled the model to obtain bet-
ter performance in multi-step prediction. Furthermore, the EMD-GRU
[57] and EEMD-LSTM [58] models used a decomposition integration
strategy, which significantly improved model prediction accuracy and
performance. In the Shanghai dataset, the MAPEs of EMD-GRU multi-
step predictionwere 34.25%, 47.04%, and 57.08%, respectively. This indi-
cates that the decomposition integration strategy can effectively im-
prove the short-term 1-step forecasting accuracy, and less historical
information makes the forecasting accuracy lower in multi-step fore-
casting. In addition, the multi-step warning accuracy of EMD-GRU in
the Shanghai dataset is 48%, 45%, and 44%, respectively. While in the
Guangzhou dataset, the multi-step warning accuracies are 71%, 75%,
and 72%, respectively. This indicates that although the prediction accu-
racy of the EMD-GRU model has improved, the model does not have
better stability and generalization performance. VMD-SampleEn-LSTM
SE MAPE MdAPE NSE

03537 4.556866 0.017825 0.999268
02965 5.526683 0.014578 0.999486
03682 5.655767 0.018557 0.999207
03266 3.606455 0.016713 0.999376
08101 2.068086 0.011765 0.996844
08351 1.889907 0.015353 0.996646
10044 2.485441 0.018185 0.995149
05383 1.279005 0.008444 0.998606
23292 4.420256 0.029408 0.969963
08428 1.625969 0.014934 0.996067
06558 1.100453 0.007509 0.997618
05563 0.975404 0.007951 0.998286
48467 11.374635 0.110915 0.755691
35525 8.198470 0.073715 0.868745
42091 9.252835 0.087672 0.815743
24228 5.060697 0.040113 0.938953



Fig. 7.Multi-step prediction results for the Shanghai dataset.
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[59] has better overall performance compared with the other five
comparison models. In the Guangzhou dataset, the MAPEs of multi-
step prediction were 19.26%, 22.25%, and 27.54%, and the accuracy of
multi-step warning was 91%, 91%, and 90%, respectively. Similar to the
drawbacks of other compared models, although the performance
of VMD-SampleEn-LSTM in multi-step prediction is improved, the
prediction performance and stability vary widely in different datasets,
and the warning accuracy in the Shanghai dataset is only 54%, 51%,
and 48%.

The proposed combined forecasting hybrid framework in this paper
has MAPEs of 5.57%, 16.06%, and 17.51% for the Shanghai dataset, and
the accuracy of early warning is 99%, 91%, and 89%, respectively. In the
Guangzhou dataset, theMAPEs are 5.91%, 8.02%, and 12.64%, and the ac-
curacy of earlywarning is 95%, 95%, and 90%, respectively. This indicates
that the combined forecasting hybrid framework proposed in this paper
fully absorbs the advantages of each model. Although the prediction
effect decreases as the number of advance prediction steps increases,
14
It still has good prediction accuracy and robustness across various
datasets.

5. Conclusion and future directions

In this paper, an air pollutant prediction and early warning system
are developed based on a multi-objective optimal combined prediction
hybrid framework. This combined prediction hybrid framework effec-
tively utilizes data processing techniques and combined prediction
with multi-objective optimization further to improve the prediction
performance of short-term PM2.5 concentrations. Specifically, the
advantages of this paper's combined prediction hybrid framework are
mainly reflected in the following aspects. (1) A feedback VMD decom-
position method is proposed in this paper, which can determine the
number of signal decompositions adaptively. (2) The feature extraction
method based on VMD-FuzzyEn extracts effective information from the
PM2.5 concentration series, reducing the computational complexity of



Fig. 8.Multi-step prediction results for the Guangzhou dataset.
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the model and improving prediction accuracy. (3) The influencing
factors of PM2.5 are introduced into the study. The factors that strongly
influence PM2.5 are selected using CopulaEn, which reduces the
redundancy and improves the model's prediction accuracy and
generalization performance. (4) Three different individual models,
LSTM, GRU, and TCN, were used to predict PM2.5 effectively. The
multi-objective optimized GPR model was used to absorb the advan-
tages of the three individualmodels and effectively combine the predic-
tion results of the individual models in a non-linear manner further to
improve the model's predictive performance and robustness. (5) The
predicted values are nonlinearly integrated using LSTM to the short-
termpredicted value of PM2.5. (6) Based on the effective short-termpre-
diction results of the combined prediction framework, air quality warn-
ings were performed, and good warning accuracy was obtained. The
experimental results demonstrate that the combined prediction hybrid
framework developed in this paper has better prediction performance
and robustness compared to the six comparison models. Therefore,
15
this combined prediction hybrid framework can be effective for air pol-
lutant prediction and early warning.

In summary, the hybrid framework developed in this paper has
an excellent performance in both accuracy and stability of predic-
tion. The application of the combined prediction hybrid model is
not limited to air pollutant forecasting and early warning but also
can be applied to the financial field and energy fields, such as price
forecasting and wind power generation forecasting, through the
processing of relevant data. More, with further research, more
novel models and algorithms will be developed in the future. In fu-
ture research, more novel individual models can be added to the
combined prediction models to predict air pollutant concentrations.
In addition, PM2.5 is just one of the air pollutants. This study only
considered the prediction of PM2.5 concentration and incorporating
more types of air pollutants into the prediction study to construct a
more novel and effective air pollutant forecasting and warning can
be another option for future research.



Table 9
Comparison model results for the Shanghai dataset.

Models MAE RMSE MAPE MdAPE NSE Accuracy

RF 1-Step 12.99 16.46 50.42 0.33 −0.06 37%
2-Step 14.12 17.93 56.35 0.35 −0.26 34%
3-Step 12.89 17.49 57.08 0.37 −0.20 35%

LSTM 1-Step 12.50 15.79 48.51 0.31 0.02 38%
2-Step 13.76 17.47 50.40 0.37 −0.20 31%
3-Step 13.78 17.33 51.48 0.38 −0.17 31%

PSO-SVR 1-Step 12.63 15.41 53.36 0.32 0.07 39%
2-Step 13.62 17.50 51.42 0.37 −0.20 36%
3-Step 13.32 17.18 50.16 0.35 −0.16 38%

EMD-GRU 1-Step 9.42 11.67 33.47 0.26 0.47 48%
2-Step 10.67 13.49 43.20 0.28 0.28 46%
3-Step 11.85 14.51 49.31 0.32 0.17 45%

EEMD-LSTM 1-Step 4.06 4.69 34.25 0.32 0.91 48%
2-Step 9.15 11.41 47.04 0.62 0.49 45%
3-Step 10.19 12.57 57.08 0.78 0.32 44%

VMD-SampleEn-LSTM 1-Step 5.78 7.57 21.41 0.15 0.78 54%
2-Step 7.31 9.70 28.04 0.18 0.63 51%
3-Step 8.04 10.76 30.94 0.19 0.54 48%

Proposed framework 1-Step 1.43 1.79 5.57 0.04 0.99 99%
2-Step 4.25 5.32 16.06 0.12 0.89 91%
3-Step 4.40 5.53 17.51 0.13 0.88 89%
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Table 10
Comparison model results for the Guangzhou dataset.

Models MAE RMSE

RF 1-Step 6.92 9.25
2-Step 9.38 11.60
3-Step 9.58 11.49

LSTM 1-Step 6.23 8.53
2-Step 8.67 10.80
3-Step 14.02 17.57

PSO-SVR 1-Step 9.01 10.99
2-Step 9.23 11.11
3-Step 9.85 11.64

EMD-GRU 1-Step 6.41 7.87
2-Step 6.76 8.52
3-Step 7.35 9.13

EEMD-LSTM 1-Step 6.21 7.67
2-Step 7.01 8.33
3-Step 8.12 10.34

VMD-SampleEn-LSTM 1-Step 3.15 4.12
2-Step 3.67 4.87
3-Step 4.38 5.91

Proposed Framework 1-Step 0.89 1.09
2-Step 1.23 1.57
3-Step 2.07 2.66
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