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Whether the change trend of futures price can be accurately analyzed and predicted is the key to the 
success or failure of futures trading. This paper constructs a new deep ensemble learning framework 
combining signal decomposition and exogenous variable feature mining for high-frequency futures price 
prediction, which consists of depth feature extraction (DFE), long short-term memory optimized by 
attention mechanism (ALSTM) and Light gradient boosting machine (LightGBM). In the depth feature 
extraction stage, based on multi-scale entropy (MSE) and Savitzky-Golay filter (SG filter), an improved 
denoising variational mode decomposition (VMD) is proposed to extract the fluctuation characteristics 
of futures price signal and eliminate the interference of complex components. To avoid the collinearity 
redundancy of high-dimensional exogenous variables, an enhanced dimensionality reduction method 
combining Spearman correlation analysis and stacked autoencoder (SAE) is designed to ensure the 
simplicity and correlation of input factors. In the prediction phase, ALSTM is adopted as a base predictor 
for constructing point prediction model by the DFE results, which can focus on learning more important 
data features. Finally, LightGBM, which has excellent effect in the field of ensemble learning, is used 
to integrate the base prediction results to obtain the final results. The actual closing price data of 
three representative futures varieties in China’s futures market are selected to verify the accuracy of 
the proposed framework. Compared with other benchmark models, this developed framework has better 
futures closing price prediction performance.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

After the outbreak of COVID-19 in 2019, it swept the globe in 
a fleeting time and became a typical “black swan” incident. The 
market environment has changed greatly, which has had a serious 
impact on the economy and the financial industry [1]. The uncer-
tainty of the time, mode and form of economic recovery threatens 
consumers and producers [2]. As a financial derivative, futures play 
an indispensable role in price discovery, hedging and risk control. 
During the epidemic, more investors try to make use of futures 
for risk hedging. Therefore, the research on futures price is of 
particularly importance. Due to the special “T+0” trading mecha-
nism, futures can be bought and sold unlimited times in the same 
day. Therefore, high-frequency trading is immensely popular in the 
futures market and is an important branch of quantitative invest-
ment. High frequency data contains a lot of information, which can 
help traders and investors make decisions quickly [3]. However, 
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how to predict high-frequency futures with nonlinear and random 
fluctuations through turbulent market noise is still an urgent prob-
lem for researchers to explore.

Reviewing the related studies, the forecasting models for finan-
cial time series can be broadly classified into three types: sta-
tistical models, artificial intelligence models and hybrid models. 
Researchers often use statistical models to analyze or predict the 
volatility of futures prices. Evans [4] found a strong correlation 
between U.S. economic news announcements and intraday price 
volatility of futures. Stoll et al. [5] found that the transmission 
of trading signals is time-sensitive, and the accuracy of predict-
ing price movements using 5-minute high-frequency futures data 
is higher than that of 10-minute high-frequency data. Brooks [6]
used ARCH models to study futures price volatility and found that 
volatility varies in unevenness. Bunnag [7] used a GARCH model 
to predict oil futures prices and calculate the optimal oil portfolio 
weights. Huang et al. [8] estimated and predicted the price volatil-
ity of four agricultural product futures using GARCH and EGARCH, 
proving that GARCH can achieve effective estimation. Although tra-
ditional statistical models such as GARCH can achieve effective 
results in predicting financial time series, it needs to be based 
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on complete statistical assumptions [9]. In the rapidly changing 
financial market, financial time series often have complex charac-
teristics, such as nonlinearity and nonstationarity. The traditional 
statistical model cannot effectively deal with the nonlinear charac-
teristics, and the effectiveness and accuracy of its prediction results 
are difficult to be further improved.

In view of the inherent defects of traditional statistical mod-
els in predicting nonlinear and non-stationary time series data, 
researchers turn their attention to artificial intelligence (AI) mod-
els with adaptive characteristics and learning ability [10]. Different 
from statistical models, artificial intelligence models do not need 
to meet statistical assumptions and can capture the internal laws 
and nonlinear information of data. Artificial intelligence models 
such as artificial neural network (ANN) [11] and recurrent neural 
network (RNN) [12] have shown excellent performance in finan-
cial data prediction. For example, Kulkarni and Haidar [13] used 
ANN to build a short-term prediction model of crude oil price 
to accurately predict the future market trend. Hajiabotorabi et al. 
[14] developed a novel wavelet-based deep recurrent neural net-
work (RNN) for crude oil futures price prediction. Their results 
prove that the developed model has a crucial betterment in the 
error measurement of crude oil futures time series pricing. As a 
common variant of RNN, long short-term memory (LSTM) neural 
network overcomes the gradient disappearance and gradient ex-
plosion problems of RNN in processing long sequence data [15]. 
Relevant studies have proved that LSTM has been widely used 
in the field of financial time series, such as carbon finance [16], 
stocks [17], and has penetrated the field of futures forecasting. 
For example, Zhang et al. [18] constructed a novel LSTM model 
to predict the price of energy futures at different time intervals. 
The experimental results show that the volatility of energy futures 
price decreases with the increase of time interval. Although the 
AI model shows superior performance in predicting financial time 
series, considering the uncertainty and complex volatility of the 
real financial market, a single AI model cannot adapt to the data 
of distinctive characteristics and modes, and it is difficult to meet 
the needs of researchers for prediction accuracy [19]. To further 
improve the effectiveness and accuracy of prediction, researchers 
began to develop hybrid models to obtain better prediction perfor-
mance.

Relevant research shows that, the existing hybrid models are 
mainly divided into two types: one is to combine different predic-
tion models, and the other is to combine data processing tech-
nology and prediction models. Among them, the hybrid model 
based on decomposition integration technology has proved to be 
an effective tool for financial time series prediction [20,21]. De-
composition integration technology decomposes complex time se-
ries into several subsequences with simpler structure through sig-
nal decomposition algorithm. Then, proper prediction models are 
constructed according to different data characteristics. Finally, the 
prediction results of all subsequences are integrated to obtain the 
final prediction results. Zhu et al. found that the decomposition 
of carbon price can find the intrinsic features of carbon price un-
der different modes, effectively tap the fluctuation trend of car-
bon price and improve the prediction performance [22]. Liu and 
Long [23] use empirical wavelet transform (EWT) to decompose 
the stock market closing price series into several subsequences 
and use LSTM to predict them, respectively. The experimental re-
sults show that the hybrid framework can be used for the analysis 
and research of financial data. Yu et al. [24] used empirical mode 
decomposition (EMD) to decompose the crude oil price into sev-
eral subsequences and realized effective prediction using adaptive 
linear neural network. Although these methods can achieve effec-
tive prediction results, they all have unavoidable shortcomings. The 
decomposition performance of wavelet transform (WT) depends 
on the artificially selected wavelet basis function and the choice 
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of decomposition level. Although EMD can realize adaptive de-
composition based on data-driven, it also has inherent problems 
such as endpoint effect. To overcome these shortcomings, varia-
tional modal decomposition (VMD) was proposed in 2014. VMD 
is an adaptive technology, which has faster convergence speed, 
stronger mathematical theory support, and can suppress mode 
aliasing effect [25]. Liu et al. [26] proposed a new decomposi-
tion integration framework with VMD and ANN for product futures 
price forecasting, which showed superior performance in whether 
one-step or multi-step prediction. Some of the previous studies 
usually forecast each subseries after decomposition, and there is 
often a similar complexity between different subseries. In addi-
tion, there is a large amount of noise in financial time series, and 
the treatment of noise is often neglected. This not only increases 
the computational complexity of the model, but also may lead 
to the accumulation of prediction errors. Therefore, the effective 
processing of decomposed subsequences stays to be further stud-
ied.

To further improve the prediction accuracy of the mixed model, 
researchers began to introduce exogenous variables into the pre-
diction model. Based on the data decomposition of carbon price, 
Hao and Tian [27] introduce a variety of exogenous variables of 
carbon price and use Max relevance min redundancy algorithm to 
select several factors that have a great impact on carbon price. Us-
ing the historical data of carbon price and exogenous variables as 
input variables, the extreme learning machine (ELM) has achieved 
good prediction performance and effectively predicted the fluctu-
ation trend of carbon price. When considering external variable 
inputs, data redundancy needs to be considered, which may in-
crease the complexity of each prediction model. Therefore, it is 
not enough to perform feature selection on exogenous variables. 
It is necessary to reduce redundant information and to mine the 
intrinsic features of exogenous variables. There are many feature 
extractors used to capture high-level features of data, such as prin-
cipal component analysis (PCA) [28], least absolute shrinkage and 
selection operator (LASSO) [29], etc. However, the most of these 
methods are shallow architecture with a single hidden layer. In 
contrast, deep networks with multiple hidden layers usually have 
more powerful representation ability for complex data. Therefore, 
deep learning techniques like stacked autoencoder (SAE) [30] and 
deep belief network (DBN) [31] are gradually come into public 
view in data processing and have been adopted in many areas. 
Though these methods can efficiently capture the high-level fea-
tures of the raw inputs, they cannot guarantee the removal of fac-
tors that are not related to the target data. To solve this problem, 
it is necessary to select features before feature extraction. Granger 
causality test [32] and correlation test [33] have been proved to be 
helpful in previous studies.

From some of the previous studies, it can be found that al-
though the hybrid model based on decomposition integration 
strategy has excellent prediction performance and robustness, 
there are still some drawbacks. First, some researchers often ig-
nore the complexity of the similarity between different decom-
position subsequences, and modeling each subsequence separately 
undoubtedly increases the complexity of model computation. Sec-
ond, the noise present in the financial time series needs to be 
dealt with, which will affect the validity and accuracy of the pre-
diction results. Third, the selection of exogenous variables alone 
is not sufficient; redundant information in the data will affect 
the accuracy of the prediction and mining the intrinsic feathers 
of the exogenous variables is necessary. Fourth, after obtaining 
the prediction results of each decomposed subseries, some of the 
current studies are mainly limited to linear integration, i.e., ac-
cumulating the predicted values to obtain the final prediction 
results. However, the simple linear integration method may lead 
to a decrease in prediction accuracy due to problems such as er-
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ror accumulation [34]. And the nonlinear integration method can 
further explore the potential features between subseries to fur-
ther improve the prediction accuracy. At present, there are two 
common nonlinear ensemble learning algorithms: bootstrap aggre-
gating (bagging) represented by random forest and boosting repre-
sented by adaptive boosting (Adaboost) [35] and gradient boosting 
decision tree (GBDT) [36]. Extreme gradient boosting (Xgboost) is 
a special GBDT, which has the characteristics of high efficiency and 
flexibility. However, its high space complexity and large memory 
consumption make it too expensive to process large-scale data. 
Light gradient boosting machine (LightGBM) [37] which is based 
on histogram, can accelerate the training speed of GBDT model 
without damaging the accuracy and avoid the defect of Xgboost 
[38,39].

Motivated by the above discussions, a novel information fusion 
ensemble framework for high-frequency futures price forecasting 
is established. First, the original closing data is decomposed into 
several subseries using the VMD algorithm. Second, the Savitzky-
Golay (SG) filter is used to reduce the noise in different subse-
quences. Third, multi-scale entropy (MSE) is used to measure the 
complexity of different subsequences, and subsequences with sim-
ilar complexity are reconstructed into new subsequences. Mean-
while, Spearman correlation analysis combined with SAE is used 
to capture the intrinsic features of exogenous variables. Fourth, 
the attention mechanism-optimized LSTM model is developed to 
predict the reconstructed subsequences. Finally, LightGBM is intro-
duced to nonlinearly integrate the prediction results of the ALSTM 
model to obtain the final prediction results. The main contributions 
of this paper are summarized below.

(1) Different intrinsic features hidden in the closing price and ex-
ogenous variables are considered. In this paper, different deep 
feature extraction models are constructed.

(2) VMD and SG filter effectively decompose the futures closing 
price series and reduce the noise in them. MSE reconstructs 
the subsequences with similar complexity and improves the 
computational efficiency of the prediction model.

(3) The feature extraction model based on Spearman correlation 
analysis and SAE effectively captures the intrinsic features of 
exogenous variables to further improve the stability and accu-
racy of prediction.

(4) The LSTM model is improved by adding the attention mech-
anism, which can give more attention to notable features, re-
alize the effective extraction of short-term patterns and avoid 
the loss of long-term information.

(5) LightGBM was introduced into the financial field, its applica-
tion scope was expanded, and the effectiveness and universal-
ity of it are confirmed.

(6) An information fusion ensemble framework is constructed for 
high-frequency futures price forecasting, which has superior 
prediction performance and robustness. In practical applica-
tion, it can supply decision support for high-frequency trading.

The rest of this paper is structured as follows: In Section 2, the 
methodology and principles involved are presented. The process 
and diagram of the proposed framework are displayed in Section 3. 
The empirical results and discussion are introduced in Section 4. At 
last, conclusions and future directions are shown in Section 5.

2. Methodology

The specific principles of the methods and technical models in-
volved in this study will be presented in this section.
3

2.1. Variational mode decomposition

VMD is a novel adaptive non-recursive decomposition technol-
ogy proposed by K. RagomiRetskiy [40]. Wang et al. [41] used SVD 
and VMD to denoise the nonstationary signals of roller bearings, 
and the results proved that VMD can effectively decompose the 
nonstationary data and extract the effective information, and the 
method is not a black-box model and is interpretable. In recent 
years, VMD has been widely used in non-stationary data process-
ing and prediction, such as fault diagnosis [42], wind power pre-
diction [43] and PM2.5 concentration prediction [44].

The input signal x(t) will be decomposed into a plurality of 
variational modes which are commonly known as the Intrinsic 
Mode Function (IMF), each of them with center frequency and lim-
ited bandwidth. The variation problem can be displayed as follows:

min{uk},{wk}

{
k∑

k=1

∣∣∣∣
∣∣∣∣∂t[(δ(t) + j

πt
) ∗ uk(t)]e− jwkt

∣∣∣∣
∣∣∣∣
2

2

}
s.t.

k∑
k=1

uk = x(t)

(1)

where k is the number of modes; {uk}, {wk}(k ∈ [1, K ]) denote 
the sets of all modes and corresponding center frequencies, re-
spectively; δ(t) is Dirac distribution; ∗ represents the convolution 
operator.

Then the quadratic penalty term γ and Lagrange multiplier ς
are taken into account to relieve constraint. The formula is con-
structed as Eq. (2).

L({uk} , {wk} , ς) =γ

k∑
k=1

∣∣∣∣
∣∣∣∣∂t[(δ(t) + j

πt
) ∗ uk(t)]e− jwkt

∣∣∣∣
∣∣∣∣
2

2

+
∣∣∣∣∣
∣∣∣∣∣x(t) −

k∑
k=1

[uk(t)]
∣∣∣∣∣
∣∣∣∣∣
2

2

+ [ς(t), x(t) −
k∑

k=1

uk(t)]

(2)

During the next process, the alternate direction method of mul-
tipliers (ADMM) is referenced as a common method to update uk , 
wk and ς , and thus find out the saddle point of the Lagrangian 
function in Eq. (2). The specific iterative steps are as follows:
(1) Initialize the values of {u1

k }, {w1
k }, {ς1} to 0, at the same time, 

k is set to the number of times to be resolved.
(2) Update ün+1

k and wn+1
k by following Eq. (3) and (4).

ün+1
k (w) = ẍ(w) − ∑

i �=k üi(w) + ς̈ (w)
2

1 + 2γ (w − wk)
2

(3)

wn+1
k =

∫ ∞
0 w |ük(w)|2 dw∫ ∞

0 |ük(w)|2 dw
(4)

Where ün+1
k , ̈x(w), ̈ui(w), ς̈ (w) indicate un+1

k (w), x(w), ui(w),

ς(w) after the Fourier transform, respectively; n denotes the num-
ber of interations.
(3) Update L (w) in the non-negative frequency interval, the cal-
culation process is as follows:

ς̈n+1(w) = ς̈n(w) + ξ(ẍ(w) −
k∑

k=1

ün+1
k (w)) (5)

where ξ stands for the iterative factor.
(4) Set a condition to stop interation. If the condition in Eq. (6) is 
reached, then stop the interation process, otherwise it returns to 
step (b) to calculate again. Eventually, the k modes are obtained.
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∑k
k=1

∣∣∣∣∣∣ün+1
k − ün

k

∣∣∣∣∣∣2

2∣∣∣∣ün
k

∣∣∣∣2
2

< ρ (6)

where ρ is the preset evaluation accuracy.
The number of modal components k needs to be determined 

before VMD decomposition. If the value of k is too large, problems 
such as mode mixing and noise generation will occur, and if the 
value of k is too small, it will be under-decomposed and difficult 
to extract enough effective information. In this paper, the number 
of k is selected by observing and analyzing the center frequencies 
of different modal components.

2.2. Multi-scale entropy

While the traditional sample entropy only responds to the char-
acteristics of a signal at a certain scale, the multiscale entropy 
algorithm can evaluate the complexity of a signal at different time 
scales. The more complex the signal is, the more noise it contains, 
and the larger the multiscale entropy value [45].

For complex futures closing price data, after VMD decompo-
sition, each IMF has a different level of complexity due to the 
presence of noise. Therefore, multi-scale entropy is used to quan-
tify the nonlinear and non-stationary features in the signal [46]. 
For a given data series χ = {χ1, χ2, ..., χl}, its MSE is calculated by 
the following steps:

(1) Handle the raw data series with coarse-grained algorithm and 
a new series can be obtained.⎧⎨
⎩

g(ψ)

j = 1
ψ

∑ jψ
i=( j−1)ψ+1 χi

1 ≤ j ≤ N
ψ

(7)

where ψ is the scale factor; j ∈ [1, N]; N = 1
ψ

represents each 
length of the time series after coarse-grained algorithm.

(2) Construct a m-dimentional vector G(ψ)(i) based on Eq. (7).

G(ψ)(i) =
[

g(ψ)(i), g(ψ)(i + 1), · · · g(ψ)(i + m − 1)
]

(8)

among which i = 1, 2, ..., N − m + 1.

(3) Define d 
〈
G(ψ)(i), G(ψ)(k)

〉
is the distance between G(ψ)(i) and 

G(ψ)( j).⎧⎨
⎩

d
〈
G(ψ)(i), G(ψ)( j)

〉 = max
∣∣∣gψ

i+k − gψ

j+k

∣∣∣ , k = 0,1, . . . ,m − 1

1 ≤ i, j ≤ N
η−m , i �= j

(9)

(4) Set the threshold u, if d 
〈
G(ψ)(i), G(ψ)(k)

〉
< u, define [G(ψ)(i),

G(ψ)(k)] as the matching vector pairs in m dimension. Use T to 
represent the total number of matching vector pairs in m dimen-
sion. Mark the ratio of T to N − M + 1 as Cψ,m

i (u). Therefore, the 
average value of Cψ,m

i (u) can be defined as follows:

Cψ,m(u) = 1

N − m + 1

N−m+1∑
i=1

T

N − m + 1
(10)

(5) Increase the dimension to m + 1 and repeat the above steps to 
obtain Cψ,m+1(u). At this moment, the MSE can be defined as:

MSE(χ,ψ,m, u) = − ln
Cψ,m+1(u)

Cψ,m(u)
(11)

According to the above calculation process, it can be seen that 
the calculation result of MSE is closely related to the pattern di-
mension m, the threshold u, the data length N after coarse granu-
lation, and the scale factor ψ . The size of the mode dimension m
4

is related to the length of the data, and the threshold u is set too 
small to make the statistical information missing, and too large to 
make the results sensitive to noise. Referring to related literature 
and experimental data, m is set to 2 and u is set to 0.15. For the 
scale factor ψ , it can be chosen in the range of 1 to 20 [47].

2.3. Savitzky-Golay filter

SG Filter is a type of digital filter methods which utilizes con-
volution operation to smooth the original time-domain signals 
[48]. The algorithm can maintain the shape and length of the 
signals while removing the micro noise and exhibits excellent per-
formance in the field of removing high frequency noise. The fu-
tures high frequency closing price data samples tend to be noisy, 
which will affect the validity and accuracy of the prediction re-
sults [49].

The main idea of SG Filter is to use local least-squares polyno-
mial approximation to fit the raw signals, thereby achieving data 
smoothing. The polynomial is shown as Eq. (12), with the number 
of input samples set to 2Z + 1. At the same time, the center point 
is considered at cp = 0.

p(cp) =
S∑

k=0

akck
p (12)

where S is the power of the polynomial, and S ≤ 2Z + 1.
Then, the description of mean-squared approximation error ε

and the solution of the polynomial are displayed in Eq. (13). The 
square approximation error is utilized to smooth the local signals.

εS =
Z∑

C p=−Z

(
p

(
cp

) − χ
(
cp

))2 =
Z∑

C p=−Z

(
S∑

k=0

akck
p − χ

(
cp

))2

(13)

2.4. Spearman correlation analysis

The Spearman correlation analysis is a non-parameter indica-
tor to measure the dependent relationships between two variables. 
It is not affected by outliers and is suitable for nonlinear vari-
ables with complex relationships. It does not assume that the 
data points obey normal distribution or satisfy any definite re-
lationship. Suppose that the paired labeled data are {XH , Y H } =
{(x1, y1), ..., (xh, yh)}, where x j = [x j(1), x j(2), ..., x j(dx)], j ∈ [1, h]. 
Assume the collection set of the dth input variable of the la-
beled data is Xh(d) . Then, XH(d) = {x1(d), x2(d), ..., xh(d)}. The Spear-
man correlation coefficient ρ of the dth input data is displayed as 
Eq. (14).⎧⎨
⎩ ρd

(
XH(d), Y H

) = 1 − 6
∑

c2
j(d)

h
(
h2−1

)
c j(d) = r

(
x j(d)

) − r
(

y j
) (14)

among them, r(x j(d)) and r(y j) are the ranks of each variable in 
the input data set XH(d) and Y H , respectively. c j(d) represents the 
difference between the two ranks of each variable.

2.5. Stacked auto-encoder

Auto-encoder (AE) is an unsupervised automatic learning me-
thod proposed in the early stage for reducing the dimension of 
high-dimensional data. In 2006, Hinton and Salakhutdinov [50]
proposed the concept of SAE by stacking multiple AEs, which can 
effectively learn the characteristics of unlabeled data. It is trained 
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Fig. 1. The principle of AE and SAE training.
layer by layer by employing the greedy learning algorithm to ex-
tract advanced features from input data. Therefore, it can capture 
a more abstract and complex representation of the original input 
data. The structures of basic AE and SAE with double hidden layers 
are exemplified in Fig. 1.

The AE takes input variables X and maps them to a potential 
presentation space E using a neural network with single layer. The
encoder transforms X into E by Eq. (15).

E = σ(W E X) (15)

where σ indicates a sigmoid function; W E is the weight matrix 
between input and output neurons.

Then, the hidden representation E is mapped to a reconstructed 
vector X̃ in the decoding layer by decoding function D(E) =
σ(W ′

E E). The output X̃ is approximately equal to the input X .
SAE consists of an input layer, multiple hidden layers and an 

output layer. From the first hidden layer, AE is employed for un-
supervised training. Each hidden layer will become the input layer 
of the next hidden one. The process is repeated until there are no 
more hidden layers. Finally, the latent spatial representation of the 
last hidden layer is the dimensionality reduction result of SAE.

2.6. Long short-term memory neural network

Recurrent Neural Network (RNN) considers the time series in-
formation contained in the data and has a time dimension. As a 
variant of RNN, LSTM can well solve the gradient explosion prob-
lem and make up for the RNN’s difficulty in processing long-term 
dependence on information.

The LSTM neural network has a control gate mechanism, which 
consists memory cell state Ct , input gates It , output gates O t , and 
forget gates Ft . When the data is transferred into the LSTM, Ft

determines the degree of passage of the information at the pre-
vious moment based on the output ht−1 of the previous moment 
and the current input xt . Afterwards, the sigmoid function σ is 
adopted in O t to determine which values are to be updated, and 
then new candidate values C̈t are generated by the tanh layer. The 
final output ht of the LSTM is determined by O t and Ct . The main 
equations of LSTM are as follows:

Ft = σ(Wκ · [ht−1, xt] + bκ ) (16)

It = σ(Wϕ · [ht−1, xt] + bϕ) (17)

C̈t = Ft · Ct−1 + It · tanh(Wτ · [ht−1, xt] + bτ ) (18)
5

O t = σ(Wϑ · [ht−1, xt] + bϑ) (19)

ht = O t · tanh(Ct) (20)

among them, Wk, bk(k = κ, ϕ, τ , ϑ) respectively denotes the weight 
matrices and bias vectors of each gate and memory cell.

To explain the structure of the LSTM more clearly, the specific 
diagram is shown in Fig. 2.

2.7. Attention mechanism

Attention mechanism is a resource allocation mechanism that 
simulates human visual mechanism. Its purpose is to allocate more 
resources to areas with high correlation under limited comput-
ing power, so as to achieve more detailed information that re-
quires to be focus more importance on and restrain other useless 
information [51]. The model with attention mechanism can pay 
more attention to the influence weight of different information on 
the prediction results and carry out more intelligent and selective 
learning for different inputs. The attention mechanism architecture 
is displayed in Fig. 3.

Supposing that the m-dimensional input vectors are {hi} (i =
1, 2, ..., k) and the environment vector vi can be obtained based 
on hi .vi is the weighted average of the previous states, the specific 
calculation is shown in Eq. (21).

vi =
k∑

i=1

aihi (21)

where ai represents the attention weight added by the state. In 
order to measure the degree of influence of input information on 
the output, si which indicates the degree of correlation between 
vi and hi is introduced.

si = tanh(W T hi + bi) (22)

Finally, the softmax function is utilized to normalize si to obtain 
ai .

ai = softmax(si) = esi∑
jesi

(23)

2.8. LightGBM algorithm

LightGBM is a new GBDT (Gradient Boosting Decision Tree) al-
gorithm based on histogram. Compared with the traditional GBDT, 
it utilizes Gradient-based One-Side Sampling (GOSS) and Exclusive 
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Fig. 2. The concrete structure of the LSTM.
Feature Bundling (EFB) technology. It transforms traversal samples 
into traversal histograms, which greatly reduces the time com-
plexity and make support efficient parallel training. The optimized 
feature parallel and data parallel methods are used to improve the 
computing speed [52]. When the amount of data is quite large, the 
voting parallel strategy can also be adopted. Nowadays, LightGBM 
is widely adopted in distinct types of data mining tasks, such as 
classification, regression, sorting, etc.

Given a training dataset D = {(xi, yi)}, i ∈ [1, n], the purpose of 
LightGBM is to look for an approximation Q̂ (x) to a certain func-
tion Q (x) which can minimize the expected value a specific loss 
function Loss(y, Q (x)) as Eq. (24).

Q̂ = arg min[E y,D Loss(y, Q (x))] (24)

LightGBM incorporates a quantity of T regression trees∑T
t=1 Q t(D) to estimate the final model, which can be described 

in Eq. (25).

Q T (D) =
T∑

t=1

Q t(D) (25)

The regression trees are represented as rp(x) , p ∈ {1, 2, ..., m}, 
where m is the number of the tree leaves, p denotes the rules of 
the tree and r is the sample weight of the leaf nodes. For detailed 
steps of GOSS and EFB, please refer to reference [53] where the 
principle and process of LightGBM algorithm are clearly explained.

3. Proposed framework

The information fusion integrated forecasting framework pro-
posed in this paper mainly consists of three modules: Depth fea-
ture extraction module, forecasting module and nonlinear inte-
gration module. The multi-source data are comprehensively and 
effectively screened and utilized in the feature extraction module, 
which lays the foundation for the next module. The collected data 
can be studied from multiple perspectives, information contained 
in the futures closing price and the impact of exogenous variables 
on the closing price are taken into consideration at the same time. 
The detailed structure of the framework is displayed in Fig. 3.
(1) In dealing with the closing price of futures, VMD is introduced 
to decompose the original data to obtain multiple IMFs. The in-
formation complexity of each IMF is evaluated through MSE, and 
the MSE threshold is set to reconstruct the characteristics of IMFs. 
IMFs with similar complexity are divided into one category. Before 
6

reconstruction, the IMFs are smoothed by SG filter to avoid the in-
terference of noise data to the data analysis process. At last, the 
reconstructed subsequence I = {I1, I2, ..., In} are obtained.
(2) In the part of exogenous variable processing, firstly, Spear-
man correlation analysis is used to quantify the correlation be-
tween influencing factors and closing price. The factors with high 
correlation are retained. Secondly, the SAE with two hidden lay-
ers is introduced to further capture the intrinsic features of rele-
vant factors, so as to simplify the input of prediction model and 
improve learning efficiency and prediction accuracy. Finally, the 
multi-dimensional features of the floor trading data and technical 
indicators are extracted as E = {E1, E2, E3}.
(3) After feature extraction, the data I and E will be used as input 
variables for the prediction model, which are divided into train-
ing set, validation set and test set according to the ratio of 6:2:2, 
respectively. The prediction target is the closing price data of the 
next 5 minutes.
(4) Then, appropriate prediction models are built for the two parts 
of the data, respectively. Different from the hard attention mech-
anism, this paper does not directly restrict the input information, 
but assigns the learning weight according to the importance differ-
ence of each input sequence. Since the location of the information 
contained in each sequence cannot be determined, the weights 
trained by neural network are adopted to weight the global input 
features in space or channel, for the sake of concentrating on the 
information in a specific spatial region. After the attention mecha-
nism optimization, the LSTM assigns different attention weights to 
the characteristics of different relevance degrees, so as to avoid the 
problem of information overload and improve the computational 
efficiency. With this step, the predicted value of each reconstructed 
subsequence is obtained.
(5) Nonlinear integration is the final module. The predicted values 
of each reconstructed subsequence are nonlinearly integrated using 
the LightGBM algorithm to obtain the final prediction.

4. Simulation and discussion

In this section, in order to fully test the feasibility of the 
information fusion framework proposed in this paper for high-
frequency futures closing price prediction, the 5-minute high-
frequency closing prices of three representative futures in the Chi-
nese futures market, namely, CSI 300 stock index futures, rebar 
futures and apple futures (referring to a type of fruit), are selected 
as benchmark data. In addition, several models from excellent pa-
pers in the field of financial time series prediction are introduced 
for comparative experiments. The selected data and prediction ef-
fectiveness evaluation criteria are described in detail below, and 
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Fig. 3. The proposed deep learning based information fusion integrated forecasting framework.
then the experimental procedure is given. At last, the experimen-
tal results are shown and discussed.

4.1. Data collection and pre-processing

4.1.1. Data pre-processing
This paper selects the closing prices of three main futures con-

tracts for experiments, i.e., the contracts with the largest volume, 
are the most actively traded contracts in futures, and the data span 
7

the period 2021/01/01 to 2021/12/31. Considering that contracts 
with different expiration dates will hardly ever trade at the same 
price, this could lead to problems with time series jumps if the 
next master contract is used directly to splice with it as it enters 
close to the delivery date. As shown in Fig. 4(A), if the data of dif-
ferent apple futures main contracts are directly spliced, the futures 
closing prices on the rolling days may jump significantly, which 
will undoubtedly have an impact on the subsequent modeling pre-
dictions.
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Fig. 4. Rolling adjustment of main contract data.

Fig. 5. The diagram of the trend of datasets and the sample division.
To ensure data continuity, this paper uses the proportional ad-
justment method to make rolling adjustments to futures prices 
on futures contract adjustment dates. The proportional adjustment 
method uses the proportion of the new contract price to the old 
contract price for relative adjustment. Taking apple futures as an 
example, January futures expired on March 25 and the price on 
the rolling date was RMB 5,131 per ton, while the opening price 
of March futures on March 26 was RMB 6,074. This means that all 
prices prior to the rolling date need to be multiplied by 6074/5131, 
about 1.1838 times. The adjusted data for the main apple futures 
contract is shown in Fig. 4(B), which is more continuous.

Continuous contract data are obtained after rolling adjustment 
of the main contracts of the three futures. The first 60% of the 
observed data of each data set is used as the training set, the next 
20% of the data is the validation set, and the last 20% portion is 
the test set. Fig. 5 plots the trend and division of the experimental 
data set, and the statistical characteristics of the data are shown 
8

Table 1
Statistical characteristics of the closing data of three futures.

Max Min Mean Median Standard 
deviation

Apple 8776.00 5400.00 6553.26 6085.94 944.13
Rebar 5828.00 3836.00 4768.07 4768.96 431.479
CSI 300 5769.55 4666.80 5041.29 4981.58 185.49

in Table 1, including the maximum, minimum, mean, median and 
standard deviation.

At the same time, in the selection of exogenous variables, the 
relevant floor trading data and technical indicators utilized in this 
paper are shown in Table 2.

4.1.2. Feature scaling
When dealing with multidimensional feature problems, it is 

necessary to scale the feature data in order to eliminate the dif-
ferences in magnitude and order of magnitude between them. This 
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Table 2
Selected exogenous variables.

Exogenous variables Explanation

Open The trading price of the first futures contract per 
5 minutes

High The maximum trading price of a futures contract 
per 5 minutes

Low The maximum trading price of a futures contract 
per 5 minutes

Volume The number of futures contracts traded in 5 
minutes

SMA Simple moving average.
WMA Weighted moving average.
EMA Exponential moving average.
MACD Moving average convergence and divergence.
ATR Average true range.
SAR Stop and reverse index.
RSI Relative strength index.
ROC Rate of change.
CCI Commodity channel index.
OBV On balance volume.

helps the neural network to converge faster and improve the per-
formance of the prediction model. In this paper, we use classical 
normalization to implement feature scaling by limiting the data 
range to [0,1] with the following equation:

x′ = x − min(x)

max(x) − min(x)
(26)

where x is the original data and x′ is the normalized data.

4.2. Evaluation of prediction accuracy

In consideration of the difficulty of measuring the prediction ef-
fect of the proposed framework comprehensively by a single eval-
uation standard, three common indicators are employed as regres-
sion performance indexes: root mean square error (RMSE), mean 
absolute error (MAE) and mean absolute percentage error (MAPE). 
The smaller the value of each error index, the more accurate the 
prediction is. The particular formulas are as follows:

RMSE =
√∑k

i=1( ŷi − yi)
2

k
(27)

MAE = 1

k

k∑
i=1

∣∣yi − ŷi
∣∣ (28)

MAPE = 1

k

k∑
i=1

∣∣∣∣ ŷi − yi

yi

∣∣∣∣ × 100% (29)

where k denotes the number of values of the testing set, ŷ is the 
ultimate forecasting result, y represents the true value of the test-
ing set.

4.3. Experimental process

4.3.1. Depth feature extraction
In this part, the closing price, floor trading data and technical 

indicators are comprehensively and effectively screened and uti-
lized. The internal implied characteristics of the closing price and 
the impact of exogenous variables on the target data are deeply 
mined. Considering there is correlation between transaction data 
and technical indicators, they are combined for feature extraction 
to eliminate redundant information.

(a) VMD-based data decomposition
9

Table 3
MSE values of IMFs.

Scale factor IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

1 0.0028 0.0959 0.3530 0.5212 0.5804 0.6018
3 0.0083 0.3177 0.5938 0.6318 0.8254 1.0746
5 0.0139 0.4716 0.6659 0.8515 1.1157 0.6431
mean 0.0083 0.2951 0.5375 0.6682 0.8405 0.7732

Table 4
MSE value of IMF after denoising.

Scale factor IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

1 0.0027 0.0955 0.3523 0.5202 0.5779 0.6012
3 0.0082 0.3172 0.5901 0.6139 0.7151 0.9026
5 0.0138 0.4710 0.6589 0.8191 1.0705 0.5123
mean 0.0082 0.2946 0.5338 0.6511 0.7878 0.6720

To effectively deal with complex volatile futures closing price 
series, this paper first uses the VMD algorithm to decompose them 
into several simpler, predictable components to extract the intrin-
sic information in the futures closing price series. Firstly, the VMD 
decomposition is performed by observing and analyzing the center 
frequencies of different modal components to determine the most 
appropriate number of decompositions k. Taking apple futures as 
an example, when k is 2, 3, 4, 5 and 6, there is no confounding of 
center frequencies. When k is 7, the center frequencies are mixed, 
so the apple futures closing price data is decomposed into 6 modal 
components. Similarly, the closing price data of rebar and CSI 300 
futures are decomposed into 6 and 5 modal components, respec-
tively.

Taking apple futures as an example, the decomposition results 
of apple futures closing price series are shown in Fig. 6(A).

(b) Signal Denoising and Reconstruction Based on MSE and SG Fil-
ter

After decomposing the futures closing price series into sev-
eral IMFs using VMD, each IMF still contains complex noise in-
formation, which undoubtedly affects the subsequent predictive 
modeling. The MSE algorithm can measure the complexity of the 
sequence. In this paper, MSE is used to calculate the multiscale 
entropy values and mean values of each order IMF component at 
different scales, with m set to 2, u set to 0.15, and the scale fac-
tors ψ chosen to be 1, 3, 5. Taking apple futures as an example, 
the MSE values of each IMF component are shown in Table 3.

It can be found that the MSE values of different IMFs vary, and 
the higher the complexity of the IMF and the more noise it has, 
the larger its MSE value is. In order to reduce the noise in the data 
and improve the accuracy of prediction, this paper uses SG filter 
to comb the data for noise reduction. After several experiments, it 
was determined that effective denoising could be achieved when 
the sliding window width of SG was set to 19 and the polynomial 
fitting order was set to 3. Taking apple futures as an example, each 
IMF component after denoising is shown in Fig. 6(B), and its MSE 
values are shown in Table 4.

The results demonstrate that the MSE values, i.e., the complex-
ity of each IMF is reduced to some extent after the SG filter de-
noising. In addition, to reduce the computational complexity of the 
prediction model, this paper uses the mean MSE value as a recon-
struction indicator, where IMFs with similar mean MSE values have 
similar complexity and are reconstructed into a new component. 
Taking apple futures as an example, IMFs can be reconstructed into 
three new components I = {I1, I2.I3}, where I1 = IMF1, I2 = IMF2, 
I3 = IMF3 + IMF4 + IMF5 + IMF6. Ultimately, the reconstructed ap-
ple futures closing price series is shown in Fig. 6(C). The results of 
decomposition, denoising and reconstruction of the rebar futures 
and CSI 300 futures data are shown in Fig. 7 and Fig. 8.
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Fig. 6. The process of decomposition, denoising and reconstruction of apple futures data.
(c) Feature extraction of exogenous variables
Due to SAE can only learn the high-level features of data and 

cannot guarantee the correlation between input factors and target 
data, Spearman correlation test is introduced before SAE feature 
engineering for nonlinear data processing. The correlation test re-
sults are shown in Table 5. The range of correlation coefficient is 
[−1, 1]. The closer it approaches to 0, the more it represents that 
there is no correlation between the two variables. In this experi-
ment, the variables with correlation coefficient >0.5 or coefficient 
<−0.5 were selected as strong correlation variables. It is clear 
from the table that there is a strong correlation between price 
factors, average indices, SAR of technical indicators and closing 
10
prices during the 5-minute period, so they are retained as inputs 
to SAE.

After Spearman correlation test, eight exogenous variables were 
selected. In order to further extract more abstract and effective in-
trinsic features from the exogenous variables and reduce the com-
putational complexity of the model. In this paper, we use SAE to 
further extract the intrinsic features from the 8 exogenous vari-
ables. After extensive experiments, the structure of SAE in this 
experiment is set as follows: two hidden layers, and the nodes of 
the first and second layers are set to 5 and 3, respectively. All hid-
den layers are trained by random batch gradient descent method. 
Sigmoid is chosen as the activation function of each layer to im-
prove the convergence speed of the network. Next, Adam is used 
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Fig. 7. The process of decomposition, denoising and reconstruction of rebar futures data.
as the optimizer and the mean absolute error function is utilized 
as the loss function. Set the batch size of each layer to 256. The 
default number of iterations is set to 5000.

Considering that the deep network structure may introduce 
overfitting problems, the early stop method is introduced, which 
has better performance than regularization in many application 
cases. The early stop method sets a given number of iterations, 
called patience. The training process is terminated if the average 
absolute error of the model on the validation set is not reduced 
after patience iterations. Through experimentation and validation, 
11
the optimal patience is set to 80. Taking the exogenous variables 
of apple futures as an example, the intrinsic features of the eight 
exogenous variables are highly extracted into three new features 
{E1, E2, E3}, and the extracted features are shown in Fig. 9.

4.3.2. Forecasting by ALSTM
After the depth feature extraction module, the reconstructed 

subsequences and the depth extracted features are used as input 
variables to construct the corresponding prediction models. First, 
the input is processed into the required 3D structure for ALSTM.
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Fig. 8. The process of decomposition, denoising and reconstruction of CSI 300 futures data.
Then the input is processed through the LSTM layer, the output of 
the hidden layer is fused through the attention layer, and finally 
mapped to the output space through the perceptual layer.

Note that the learning rate has an important effect on accelerat-
ing the convergence rate and improving the accuracy of the model, 
the learning rate decreasing algorithm is introduced in the model 
constructing. Set the initial learning rate as 0.05. If the verification 
loss does not decrease after 10 training epochs, the learning rate 
will be halved and the minimum learning rate is 0.001. Meanwhile, 
the over fitting problem caused by complex network structure is 
also worthy of attention. Thus, the regularization strategies are ap-
12
plied to avoid the problem, chiefly including Dropout mechanism 
and early stopping method. Dropout mechanism randomly discards 
the neurons of hidden layers, preventing over reliance on some lo-
cal features. The early stopping method is same as that described 
in Section 4.3.1 (c).

Meanwhile, the other hyper-parameters adjustment is realized 
through substantial experiments and priori experience: look back 
is set to 4, batch size equals to 128, neurons is set to 64, activation 
is ‘sigmoid’, and optimizer is ‘Adam’, the loss function is ‘MSE’, the 
upper limit of epochs is 1000.
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Fig. 9. SAE extracts the intrinsic characteristics of exogenous variables of apple futures.
Table 5
The results of Spearman correlation test.

Apple Rebar CSI300

Open 0.999470 0.999658 0.998697
High 0.999750 0.999837 0.999414
Low 0.999745 0.999851 0.999360
Volume 0.022822 -0.064881 -0.031402
SMA 0.999318 0.999551 0.998228
WMA 0.99962 0.999756 0.999035
EMA 0.999539 0.999702 0.998829
MACD -0.017352 -0.009586 0.008572
ATR 0.585609 0.179287 0.305897
SAR 0.993671 0.995712 0.984250
RSI 0.079383 0.086480 0.124043
ROC 0.040764 0.037245 0.074151
CCI 0.041481 0.045590 0.078812
OBV 0.639645 0.925446 0.815198

Table 6
The parameters setting of LightGBM.

Parameter name Explanation Parameter 
value

Feature fraction The proportion of feature selection for 
tree building

0.8

Num leaves Number of leaf nodes 511
Max depth Maximum depth of the tree 11
Bagging fraction The proportion of sample selection for 

tree building
0.8

Num interations Maximum number of iterations 75
Learning rate Learning rate of training model 0.05

4.3.3. Nonlinear ensemble learning by LightGBM
After obtaining the predicted values of each reconstructed sub-

sequence by the ALSTM model, the predicted values of all recon-
structed subsequences are finally integrated. For example, the out-
puts of the predicted values of the three reconstructed subseries 
{I1, I2, I3} of the apple futures closing price dataset are pooled to-
gether as the input variables of the LightGBM algorithm and fitted 
to obtain the final prediction results. In order to improve the gen-
eralization of the model, a grid search algorithm was used to find 
the optimal parameters. Table 6 shows the selection of the impor-
tant parameters involved.

To show the experimental results more visually, the final pre-
diction results and evaluation indicators of the framework pro-
posed in this paper are shown in Fig. 10. As can be seen in Fig. 10, 
although some values do not achieve fully accurate predictions, the 
13
hybrid model effectively predicts the overall trend of futures. The 
experimental results prove that the framework can effectively pre-
dict the closing price of the futures and provide more reference 
information for high-frequency futures trading.

4.4. Comparative experiment

To further validate the effectiveness of the forecasting frame-
work proposed in this paper, we construct six benchmark models 
for comparative experiments, which are chosen to be typical of the 
best results in the field of financial time series forecasting. In ad-
dition, the parameters of the benchmark models are set by the 
methods introduced in the related literature. The forecasting per-
formance and computational complexity (computation time) of the 
comparison models are shown in Table 7.

It is obvious from Table 7 that the prediction performance of 
the single model is slightly weaker than that of the hybrid model. 
Although multilayer perceptron neural network (MLP) and LSTM 
can learn some features of the data, the nonlinearity and high 
complexity of the unprocessed data make the prediction perfor-
mance unsatisfactory. In addition, LSTM is more suitable for time 
series forecasting in finance than MLP. The memory mechanism of 
LSTM also makes it more computationally complex, and its com-
putation time is about twice that of MLP.

Meanwhile, the prediction performance of VMD-bidirectional 
gated unit neural network (BiGRU) and complete ensemble em-
pirical mode decomposition with adaptive noise (CEEMDAN)-LSTM 
using the decomposition integration technique is significantly im-
proved Taking apple futures data as an example, the RMSE, MAE 
and MAPE of VMD-BiGRU are reduced by 30.84%, 27.62% and 
52.87%, respectively, compared with LSTM. Therefore, the decom-
position integration technique can effectively improve the predic-
tion accuracy of the model. At the same time, modeling predic-
tion for all subsequences after decomposition also substantially 
increases the computational complexity of the model. Its compu-
tation time is about 10 times that of the LSTM model.

More, VMD-LSTM-support vector machine (SVR) introduces 
nonlinear integration technique, which effectively improves the ac-
curacy of prediction. In terms of MAPE, it is reduced by 71.11%, 
53.30%, and 66.82%, respectively, compared to VMD-BiGRU on 
the three data sets. Therefore, the advantages of the nonlinear 
integration technique are significant. CEEMDAN-sample entropy 
(SE)-LSTM-RF uses SE to recombine decomposition sequences of 
similar complexity on the basis of the decomposition nonlinear 
integration technique, and its computational complexity is re-
duced to some extent, which reduces the risk of computational 
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Fig. 10. Comparison diagram of prediction results and true values.
error accumulation. As a result, its computation time for the three 
datasets is reduced by 24.63%, 21.73% and 25.27%, respectively, 
compared with VMD-LSTM-SVR, and its prediction performance 
is improved.

The prediction performance of the framework proposed in this 
paper outperforms these six benchmark models. From the over-
all comparison results, although CEEMDAN-SE-LSTM-RF has good 
prediction accuracy and stability, it is still difficult to surpass the 
method developed in this paper. In this paper, based on the de-
composition integration strategy, SG filter is introduced to reduce 
the noise present in the sequence, and MSE is used to reconstruct 
the decomposition sequence with similar complexity, which re-
duces the complexity of prediction and improves the accuracy of 
prediction. In addition, this paper introduces exogenous variables 
and extracts the intrinsic features in the exogenous variables to 
reduce the impact of redundancy of exogenous variables on the 
prediction model. Finally, the final prediction results are obtained 
by using LightGBM nonlinear integration. The comparative experi-
mental results prove that the framework proposed in this paper is 
an effective tool for high-frequency futures closing price prediction 
and can provide an effective reference for investors’ trading.
14
5. Conclusion

In this paper, a novel information fusion synthesis framework is 
developed for 5-minute high-frequency futures closing price fore-
casting. DFE-ALSTM-LightGBM integrates three modules, which in-
cludes depth feature extraction, forecasting and integration. In this 
paper, closing price, floor trading data and technique indexes are 
selected as fundamental data, among them, floor trading data and 
technique indexes are combined as exogenous variables for analy-
sis. In the first module, VMD algorithms supported by MSE, and 
SG filter are developed to handle closing prices, as well as en-
hanced dimensionality reduction methods including Spearman cor-
relation analysis and SAE to extract intrinsic features of exogenous 
variables. In the forecasting module, ALSTM is adopted to gain 
more comprehensive information and allocate reasonable weight 
features with different degrees of importance. Finally, in the inte-
gration module, LightGBM is employed to aggregate the forecast 
values and produce the ultimate futures closing price prediction 
results. The simulation results show that the proposed framework 
can achieve the predictions with higher accuracy and better ro-
bustness compared with other latest forecasting methods. There-
fore, it is a powerful tool for high frequency futures closing price 
forecasting.
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Table 7
The prediction effect of the comparison models and proposed framework.

Model Futures RMSE MAE MAPE (%) Computation time 
(minutes)

MLP [54] Apple 85.2341 65.2131 9.2326 1.6
Rebar 54.8722 46.4365 7.7564 1.2
CSI300 42.5322 39.8644 6.1255 1.3

LSTM [55] Apple 80.3412 63.1092 8.0234 2.8
Rebar 50.0122 44.6752 7.1255 2.1
CSI300 39.4451 34.2351 5.9822 2.2

VMD-BiGRU [56] Apple 55.5612 45.1244 3.7812 21.4
Rebar 39.1991 34.8749 2.1015 18.1
CSI300 35.6215 27.9124 2.6414 18.5

CEEMDAN-LSTM [57] Apple 57.1294 49.9851 3.1242 22.4
Rebar 38.1293 32.5831 2.8713 19.7
CSI300 35.6871 30.9831 2.9814 19.4

VMD-LSTM-SVR [58] Apple 44.2355 37.0456 1.0923 20.3
Rebar 27.9864 19.9742 0.9814 18.4
CSI300 23.8752 16.5418 0.8764 18.2

CEEMDAN-SE-LSTM-RF [59] Apple 39.0987 32.1131 0.8765 15.3
Rebar 20.8761 14.9865 0.5341 14.4
CSI300 18.5991 12.8731 0.4421 13.6

The proposed framework Apple 34.3230 28.0488 0.3480 16.3
Rebar 14.3128 11.5271 0.2639 15.2
CSI300 11.1188 8.2559 0.1676 15.1
Meanwhile, how to establish optimal proper forecast models 
can be the topic of further study. Realizing automatic parameter 
selection through optimization algorithm and taking more market 
factors into consideration are the main research directions. With 
the innovation of technology and the maturity of methods, new 
algorithms will be explored in the future research.
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